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1 Introduction

Algebraic topology is the study of spaces using the methods of algebra. Usually
this means that one is interested in certain algebraic structures derived from
a space, such as the (co)homology groups or homotopy groups, which one can
study using the wide variety of methods from algebraic disciplines. In this text
we will not study these algebraic objects themselves. The focus will, however,
be on spaces having the same algebraic invariants. This means that we are
interested in spaces which are either homotopy equivalent or weakly equivalent,
although some maps we encounter may do better than this.

While algebraic topology is primarily the study of topological spaces, the
theory often touches on different but related structures as well. For instance
we will look at categories, and describe a functor which makes a space out of
a category; this allows us to study a wide range of spaces by looking at their
underlying categories. One of our primary objects of study will be diagrams
of spaces (i.e. a sequence of spaces with certain maps between them), and
how we can transform such a diagram into a space. We will also rely heavily
on simplicial sets, as they are in a sense equivalent to topological spaces but
much easier to analyze algebraically. We will also encounter bisimplicial sets,
simplicial spaces, and topological categories to name a few, and study how they
can be transformed into topological spaces.

We will pick up some tools to study these structures as well. For example we
will define (co)ends as a convenient way to describe a lot of the constructions
we will encounter, and we will give a very brief introduction to model categories
as they give a lot of context to some definitions and results. These, together
with the transformations between the structures mentioned above, will form the
background to the results we are interested in.

The concept we want to study is that of a certain class of spaces which
come equipped with a certain kind of binary operation. This operation is in
our case associative and commutative up to homotopy; this notion of being
almost commutative can be elegantly described using the so-called Barratt-
Eccles operad, and we call these objects E∞-spaces. We will describe a type of
category, called a permutative category, which gives rise to E∞-spaces. These
form the contents of chapter 2.

We will then give the notion of an I-space (which is nothing more than a
functor from the category I to the category of spaces), and that of a homotopy
colimit. The latter is, like the ordinary colimit, a construction which makes a
functor into a space. The catch here is that the homotopy colimit of a com-
mutative I-space again has the structure of an E∞-space. This is described in
chapter 3.

Following that we give a construction which makes a commutative I-space
out of a permutative category, and we combine it with the results from chapter
3 to again get an E∞-space. We then explore how these two E∞-spaces we have
gotten out of a permutative category are related. This is the content of chapter
4.

After that we give slight generalisation where we do not look at a permutative
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category K but rather at a functor from K to the category of spaces. This is
the final chapter 5.

The main result of the text up to chapter 4 is that the E∞-structure on the
classifying space of a permutative category is equivalent to the E∞-structure
on the homotopy colimit of a suitable I-space. This has been described in the
literature before in chapter 7 of [SS16]. The main result of Chapter 5 is a
generalisation of this; for a commutative category K the E∞-structure on the
homotopy colimit of a K-diagram of spaces is equivalent to the E∞-structure
on a suitable I-space. The importance of this fact is that it shows how central
to the theory the category I is; any homotopy colimit with an E∞-structure is
equivalent to a homotopy colimit of an I-space.
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1.1 Conventions

All categories are locally small, and arbitrary categories will tacitly be assumed
to be (co)complete as well. This means that in statements like ”Let C be a
category. Define ...” we assume C to be locally small and (co)complete. Specified
categories such as the category I we study in chapter 3 may not be (co)complete
however. The category of small categories is denoted cat, and the category of
topological spaces is denoted Top.

Morphism sets in a category C will be denoted C(−,−). The category of
functors from C to D will be denoted DC , and natural transformation sets will
be denoted DC(−,−).

Isomorphisms are denoted ∼=, and weak equivalences are denoted ' or men-
tioned explicitly.

The set N contains the number 0.
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2 The Barratt-Eccles operad

In this section we will start with some necessary underlying concepts which can
be found in numerous books and other sources. The primary source that was
used here is [Ric20].

2.1 Monoidal categories

In what follows, almost all categories we will be interested in will have some
product-like structure, which we will call monoidal structures. The definition of
a monoid in the classical sense can then be generalised to this setting. Monoidal
structures can be formed by products or coproducts alike, and even composition
of endofunctors gives a monoidal structure. Note that in the definition the
symbol ⊗ is used, as is common in a lot of the literature; this should not be
confused with the tensor product of modules or in other categories. These
operations will form a monoidal structure, but any additional properties they
possess need not hold in other categories.

Definition 2.1. A monoidal category C is a category with a bifunctor −⊗− :
C ×C → C, an object e ∈ C, and natural isomorphisms for all objects C1, C2, C3

:
C1 ⊗ (C2 ⊗ C3) ∼= (C1 ⊗ C2)⊗ C3, C ⊗ e ∼= e⊗ C ∼= C

These isomorphisms have to satisfy certain coherence condition which we will
not give here. A full definition can be found in Definition VIII.1.4 of [Ric20].

If the isomorphisms above are equalities we have a strict monoidal cat-
egory. A monoidal category is symmetric if it additionally comes equipped
with natural isomorphisms

τ : C ⊗D → D ⊗ C

satisfying τ2 = 1, τC,e = 1 and properties concerning associativity. If the sym-
metry maps are equalities, we call a category strictly symmetric monoidal.
A category which is strictly monoidal but non-strictly symmetric is called per-
mutative.

Examples:

• The category of sets has a monoidal structure by both the product and
disjoint union. The unit is in the first case a one-element set, and in the
second the empty set. Here we see that the first example is not strict.
In general, categories with finite products and a terminal object form a
monoidal category. Dually, the same holds for finite coproducts and an
initial object. This can of course be extended to the category of presheaves
by doing this pointwise.

• The category of small categories has a monoidal structure by the product
category and the one-point category. This is a special case of the above,
but will be of importance later.
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• InR-modules for a commutative ringR, the tensor product gives a monoidal
structure with unit R. This specialises to vector spaces and abelian groups

• The category of endofunctors of a category has a strict monoidal structure
by composition of functors. The identity functor forms a unit.

• The category of simplicial sets which will be introduced in the next section
has the pointwise product as simplicial structure: (A ⊗ B)n = An × Bn.
The unit is the simplicial set with one element in each degree.

Of course, this would not be category theory if there were not some concept
for mappings respecting this kind of structure:

Definition 2.2. Let (C,⊗, e) and (D,⊕, d) be monoidal categories. A lax
monoidal functor F : C → D is a functor with natural maps

φ : F (C)⊕ F (C ′)→ F (C ⊗ C ′)

and a map e′ → F (e), which are compatible with the associative and unital
structures. The functor is called strong monoidal if φ is a natural isomor-
phism, and strictly monoidal if it is an equality. If C and D are symmetric
with symmetry isomorphisms τ and τ ′ respecitively we say that F is lax sym-
metric monoidal if F is lax monoidal and the following diagram commutes:

F (A)⊕ F (B) F (B)⊕ F (A)

F (A⊗B) F (B ⊗A)

φ

τ ′

φ

F (τ)

If this diagram commutes and F is strong or strictly monoidal then we say that
F is strong or strict symmetric monoidal.

We can now define the concept of a monoid, which will play a central part
in the theory at hand.

Definition 2.3. A monoid in a monoidal category (C,⊗, e) is an object M
with a morphism µ : M ⊗M → M and e → M satisfying associativity and
unitality. In a symmetric monoidal category with symmetry map τ we further
impose µ ◦ τ = µ for a commutative monoid.

Examples:

• A monoid in Sets with × is what is classically a monoid, and commutative
monoids are what is usually understood as a commutative monoid.

• A monoid in the category of k-modules is a k-algebra, where k is a field.

• A monoid in the category of endofunctors of a category is called a monad.
Explicitly, it is a functor M : C → C with a natural transformation M ◦
M ⇒ M , i.e. for every X a morphism M(M(X)) → M(X) which is
natural in X, and also a map X →M(X). An example of a monad is the
powerset operation on sets, with the ”multiplication” given by the union.
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Monads will turn out to be of use to us, as the operads we will form later
can be realised as monads. Also of use to us is the concept of an algebra over a
monad:

Definition 2.4. Let M be a monad on a category C with multiplication µ and
unit η. An algebra over M is an object X of C with a morphism f : M(X)→ X
satisfying f ◦M(f) = f ◦µ and f ◦ η = id. A morphism of algebras between
(X, f) and (Y, g) is a map F : X → Y such that g ◦M(F ) = F ◦ f .

The category of algebras over a monad M in a category C is denoted C[M ].
The definition of a monad can also in general be given for other monoids,

where such a structure is generally called a module. To do this, view the object
X from the algebra as a constant endofunctor. Then the morphism f given in
the definition of the algebra can be viewed as a map M ⊗X → X where ⊗ is
the monoidal structure on endofunctors. For general monoids A we can then
say that an object Y is a module if there is a morphism A⊗ Y → Y satisfying
some conditions corresponding to those imposed on an algebra. We will not use
this more general concept in this text.

2.2 Classifying spaces

Let C be a small category. We want to associate to this a topological space,
which will be denoted BC. Since we know a lot of constructions for topologi-
cal spaces we can immediately make definitions for small categories using this
topological space, e.g. πn(C, x) = πn(BC, x′) for some particular x′ ∈ BC. We
can also study how certain concepts such as (co)limits transfer from categories
to topological spaces. Finally it allows us to define weak equivalences and ho-
motopy equivalences for categories.

Definition 2.5. Let ∆ be the category of finite sets [n] = {0, ..., n} for n ≥
0 and order-preserving functions. A simplicial object in a category C is a a
contravariant functor from ∆ to C. For A a simplicial object in a category we
will often abbreviate A([n]) by An. The simplicial objects in a category form
a category of their own where the morphisms are the natural transformations,
and we denote this category sC.

Defining a simplicial object thus means giving a morphism for each of the
morphisms in ∆ in a functorial manner. In practice it suffices to only look at a
set of generating morphisms in ∆:

Lemma 2.6. Let di : [n − 1] → [n] and si : [n] → [n − 1] be the maps which
respectively are injective and miss i, and are surjective and hit i twice. Explicitly,
we have for di(j) = j if j < i, and di(j) = j+1 if j ≥ i, and a similar definition
for si.

All maps in ∆ are generated by these maps. Consequently, for a simplicial
set A it suffices to give the sets An and the maps A(di) and A(si) satisfying
certain relations.
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Remark 2.7. We will mainly be concerned with the category of simplicial sets
from this point on. This category is in some sense equivalent to the category
of topological spaces, and its main advantage is that it will be more convenient
to talk about algebraic structures in this setting as it has a more combinatorial
nature. Later on we will also encounter bisimplicial sets, which are simplicial
objects in the category of simplicial sets. Using the adjunction between products
and functor categories we can transform these to

cat(∆op, cat(∆op,Set)) ∼= cat(∆op ×∆op,Set) = cat((∆×∆)op,Set)

It is therefore safe to just write these as a functor with two indices.

Let us define the categories [n] with objects {0, 1, 2...n} and a unique mor-
phisms i→ j if i < j. We can define the the so-called face maps

δj : [n]→ [n+ 1], δj(i) =

{
i if i ≤ j
i+ 1 else

and degeneracy maps

σj : [n]→ [n+ 1], σj(i) =

{
i if i ≤ j
i− 1 else

To make these functors we also need to give an action on morphisms. However,
there is exactly one morphism between any two objects so this is uniquely de-
termined. More explicitly, δj inserts an identity and σj composes two maps.

Definition 2.8. The nerve of C, denoted NC, is given by NCn = cat([n], C).
The face and degeneracy maps are defined by di(f) = f ◦ δi and si(f) = f ◦ σi.

If F : C → D is a functor we get a morphism of simplicial sets NF : NC →
ND defined by f 7→ f ◦ F . More explicitly, if we think of an element of the
nerve not as a functor but as its image we can think of an element of NCn as a

chain c0
f1−→ ... → cn of length n. The image of this under NF would then be

F (c0)
F (f1)−−−→ ...→ F (cn)

These face and degeneracy maps have a very explicit construction, by the
above remark on what the δ and σ do on maps, and the fact that objects of the
nerve must be functors. If we have a chain

c0
f1−→ c1...

fn−→ cn

and we apply si and di to it we get the two chains

c0 → ...ci
id−→ ci → ...→ cn, c0 → ...→ ci−1

fi+1◦fi−−−−−→ ci+1 → ...→ cn

Note that it is really necessary for a category C to be small to take the
nerve, as NC0 = Obj(C) needs to be a set. We will see some examples of this
construction after we have defined how to translate simplicial sets to topological
spaces.
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Lemma 2.9. The category of simplicial sets is complete and cocomplete.

Proof. This can generally be done for functor categories, as we can take these
limits pointwise. The statement then follows because the category of sets is
complete and cocomplete.

This means we can give the category of simplicial sets a monoidal structure
using both the product and coproduct. The units in this case are the one-point
simplicial set ∗ with ∗([n]) = {∗}, and the empty simplicial set.

Proposition 2.10. The nerve functor is strong monoidal with respect to the
product.

Proof. We can, given C,D small categories, transform

N(C × D)n

= {C1 ×D1 → ...→ Cn ×Dn|Ci ∈ C, Di ∈ D}

cong{C1 → ...→ Cn|Ci ∈ C} × {D1 → ...→ Dn|Di ∈ D}
= (NC ⊗ND)n

Maps in C × D are pairs of maps in C and D by definition, so we can project
these map pairs to their first or second coordinate to get the resulting maps
in NC and ND. To go the other way one can take the product of maps and
objects, and these operations are clearly inverse to each other.

Proposition 2.11. The nerve functor is strong monoidal with respect to the
coproduct.

Proof. A chain in a coproduct of categories C t D has a first entry x in either
C or D, and all chains starting in x stay within this component, and are thus
either chains within C or D.

The next point in our exposition is giving a way to make a topological
space out of a simplicial set. Simplicial sets have a very convenient algebraic
definition, but topological spaces have some advantages as well. They are for
instance easier to visualize in some cases, and definitions such as contractibility
are more familiar in this setting.

Definition 2.12. Let S be a simplicial set with face maps σn and degeneracy
maps δn. Consider the sets

∆n = {(t0, ..., tn) ∈ Rn+1|∀iti ≥ 0, t0 + ...+ tn = 1}

called the standard n-simplices. They will carry the subspace topology and
come equipped with standard face and degeneracy maps d, s. The geometric
realization of S is the topological space

∐
Sn × ∆n/ ∼ where Sn carries the

discrete topology. The equivalence relation is generated by

(δi(x), t) ∼ (x, di(t)), (σi(x), t) ∼ (x, si(t))
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This also forms a functor, so for a morphism of simplicial sets f : X → Y we
get |f | : |X| → |Y |, which is defined by |f |(x, (t0, ..., tn)) = (f(x), (t0, ..., tn)).
The fact that this is well-defined with respect to the equivalence relation comes
from the fact that f is a morphism of simplicial sets.

Proposition 2.13. The geometric realization functor is lax monoidal with re-
spect to the product of simplicial sets and the compactly generated product of
topological spaces.

See [Ric20] for a constructive proof for |X × Y | ∼= |X| × |Y | whenever |X| ×
|Y | is a CW-complex. In general this statement is false when talking about
the ordinary product of topological spaces; the remedy to this is to take the
compactly generated product of topological spaces. A proof for this case can
be found in Remark X.6.9 of [Ric20], and the subtleties of compactly generated
products are explained for example in section VIII.5 of [Ric20]. The full details
of both proofs are noticeably more involved than the proofs for the nerve functor,
and this background is not necessary for the scope of this text.

Definition 2.14. The classifying space of C, denoted BC, is |N(C)|. Com-
posing these two functors gives that if we have a functor F : C → D we get
BF : BC → BD

The definition of a simplicial set as a ’sequence’ of sets building on top of
each other is reminiscent of the definition of a CW-complex, which is a sequence
of skeleta which build on top of each other by attaching cells. This intuition is
correct, and formalised in the statement below:

Proposition 2.15. The classifying space of a small category has a filtration
induced by the original category which exhibits the space as a CW-complex.

Note that the proposition is strict in that it does not assume this to hold up
to weak equivalence.

An immediate obstacle one finds when one want to prove this is that ele-
ments of the form si(x), the so-called degenerate elements, act as copies of
the element x. The proof becomes rather cumbersome and involves identifying
every element with a non-degenerate element; an explicit proof can be found in
[Ric20], X.6. We will see this idea in practice when we describe the realization
of the ∆n on the next page.

In what follows we will, as mentioned before, mostly work with simplicial
sets. It is not true that the categories of simplicial sets and topological spaces
are equivalent, although it is true that they are Quillen equivalent. Quillen
equivalence is weaker than normal equivalence of categories but also more spe-
cific in a sense. We will later define what this means but we will not go into
depth nor will we prove it. Something we can state already is the following:

Proposition 2.16. Let S be the singular simplicial complex functor. Then
| − | : sSet � Top : S are adjoint functors.

Proof. Deferred until a later point at section 3.2
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The statement that this is a Quillen equivalence says that these adjoint
maps preserve quite some more structure, for example that the composition is
naturally weakly equivalent to the identity on some objects. In the next section
we will give an explicit definition for this.

Since we now have a method of conversion between simplicial sets and topo-
logical spaces we can state definitions we know from the classical treatment of
topological spaces, and directly translate them to simplicial sets.

Definition 2.17. Let X be a simplicial set. We say X is contractible if |X|
is contractible.

In what follows we will use the simplicial set ∆n : [m] 7→ ∆([m], [n]). The
degeneracy and face maps are given by compositions with the standard δ, σ.
These form the analogue of the standard n-simplices of topological spaces. In-
deed |∆n| is the standard n-simplex; let us look for example at ∆2. In degree
0 it has three elements, as [0] has one element and [2] has three. There are 6
maps from [1] to [2], but three of those are degenerate (these are the constant
maps), so we only get 3 vertices; when one writes out what the face maps give
one finds out this forms the edge of a triangle. There is only one non-degenerate
map from [2] to [2] (the identity) filling in the face of the triangle. All higher
maps are degenerate. A triangle is a presentation of the standard 2-simplex.

Definition 2.18. Let f, g : X → Y be morphisms of simplicial sets. A sim-
plicial homotopy between f and g is a map H : X × ∆1 → Y making the
following diagram commute:

X X ×∆1 X

Y
f

id×d0

H

id×d1

g

Here X is identified with X ×∆0

This definition is very reminiscent of the definition of a homotopy in topologi-
cal spaces. There one requires H(x, 0) = f(x), H(x, 1) = g(x), but if one lifts the
map id×d0 to the level of topological spaces it is the map (x, (id, t)) 7→ (x, (0, ∗)
where id is the unique element of (∆1)1, and on the right ∗ is the unique el-
ement of the 0-simplex which is attached to the 0-map in (∆1)0. This means
that |H| ◦ |(id× d0)|(x, (id, t)) = |H|(x, (0, ∗)) = |f |(x) which is the same as in
the topological definition up to identifications. Here we used that id is the only
non-degenerate element of (∆1)1.

The above identification gives an insightful relationship with the topological
case, but is rather forgetful of much of the simplicial set ∆1. A simplicial map
should also take care of the degenerate elements, but luckily there is a very com-
binatorial interpretation of ∆1. Since elements of (∆1)n are order-preserving
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maps from [n] to [1] = {0, 1} it suffices to describe such an element x by the
index at which x(i− 1) = 0, x(i) = 1 since before that it is 0 and afterwards it
will be 1. If we identify x with this i (where we put 0 if it is always 1 and n+ 1
if it never is) we can write (∆1)n = [n+ 1]. This means that giving a simplicial
homotopy can be done by giving at level n a way of going from fn to gn in n
steps.

Example 2.19. Let C = {0 a−→ 1} with a an isomorphism with inverse b. We
prove that NC is contractible by giving a homotopy between a constant map to
a point and the identity. The map to a point is given by fn(∗) = 0 → ... → 0.
A homotopy H is given at level n by a map N(C)n × [n+ 1]→ N(C)n with

Hn(x, n+ 1) = fn(∗), Hn(x, 0) = x

We define Hn(x, i) on x = j0
x1−→ ...

xn−−→ jn by 0
id−→ 0 → ...0 → ji

xi+1−−−→ ...jn,
so we collapse the maps one by one. We clearly have Hn(x, 0) = x as nothing
has changed there, and Hn(x, n + 1) = fn(∗) as all arrows have been changed
to identities. One can write out and check that this gives a proper map of
simplicial sets. This category and its classifying space will come up again at a
later point, where we will identify BC with S∞; we have thus proven that S∞

is contractible.

Lemma 2.20. Let F,G : C → D be functors between small categories. A natural
transformation τ : F ⇒ G induces a homotopy from BF to BG.

Proof. Note that the category [1] = {0 < 1} with two objects and one mor-
phisms has as classifying space the unit interval. It thus suffices to give a functor
h : C × [1] → D with h(−, 0) = F, h(−, 1) = G. We define h to do this on ob-
jects, and on morphisms we take, with f : C → C ′, h(f, id0) = F (f), h(f, id1) =
G(f), h(f, 0 < 1) = τC′ ◦ F (f) = G(f) ◦ τC . This defines a functor and we now
define a homotopy

BC × [0, 1] ∼= B(C × [1])
B(h)−−−→ BD

Corollary 2.21. A pair of adjoint functors F,G between C and D gives a
homotopy equivalence between BC and BD.

Proof. We have the unit η : id ⇒ GF and counit ε : FG ⇒ id inducing ho-
motopies id⇒ B(GF ) = B(G)B(F ) and vice versa. This gives that B(F ) and
B(G) form a homotopy equivalence.

Corollary 2.22. Equivalence of categories implies homotopy equivalence of
their nerves/classifying spaces.

An equivalence of categories is a somewhat stronger condition than we
strictly need. An equivalence of categories is given by a pair of maps whose
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compositions are naturally isomorphic to the identity; to form the required
homotopies we do not need those natural transformations to be natural isomor-
phisms. We see this for example in the following:

Proposition 2.23. Let C be a small category with an initial object. Then BC
is contractible.

Proof. Let 0 be the initial object. We have {∗} F−→ C G−→ {∗}, F (∗) = 0, G(x) =
∗. The composition G ◦ F is the identity (as it is the only endofunctor of
the one-point category), and F ◦ G is the constant 0 map. This is a natural
transformation to the identity by the transformation formed by the unique maps
out of 0.

The contractibility of the space at Example 2.19 follows more easily now;
the category C there is equivalent to the one-point (terminal) category for all n
as any endofunctor on it is pointwise isomorphic to the identity as all objects
are isomorphic.

2.3 Model categories

In this section we will give a very brief introduction to the definition of a model
category. It will not be used extensively, but it will at times be useful to know
what some of the terms mean for topological spaces or simplicial sets. Addi-
tionally this makes it easier to put some of the constructions into a broader
context.

Definition 2.24. Let C be a complete and cocomplete category. A model
structure on C consists of three classes of morphisms: the fibrations, cofi-
brations, and weak equivalences, such that the following properties hold:

1. If f = g ◦h, then if two out of three are in one of the distinguished classes
the so is the third.

2. all three classes are closed under retracts: if

A B A

C D C

f g f

is commutative with the horizontal rows composing to the identity, then
if g is in one of the classes then so is f .

3. If
A B

C D

f g
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is a commutative square with f a cofibration, g a fibration and either f or
g a weak equivalence, the the dotted arrow exists making both resulting
diagrams commute.

4. Any map f may be factored as f = g ◦h with f a cofibration, g a fibration
and one of the two a weak equivalence.

We call morphisms that are fibrations and weak equivalences the trivial
fibrations and those that are cofibrations and weak equivalences the trivial
cofibrations. An object c ∈ Obj(C) is called fibrant if the map X → 1, with
1 the terminal object, is a fibration. Likewise it is called cofibrant if the map
0→ X is a cofibration.

Property 3 of the definition can be formulated as ”cofibrations have left lifts
with respect to trivial fibrations” and ”fibrations have right lifts with respect to
trivial cofibrations”. The converse holds as well (i.e. morphisms which have left
lifts with respect to trivial fibrations are cofibrations), which means it suffices
to give either the class of fibrations or cofibrations to define both. Nevertheless
it remains useful to give an explicit description of both classes in practical cases.
We will not give precise description nor a proof of this fact; for a more thorough
introduction the reader is referred to [DS95].

Example 2.25. In the classical model structure on the category of topological
spaces, the weak equivalences are given by the weak homotopy equivalences. Fi-
brations are Serre fibrations; these are maps which have the left lifting property
with respect to all the inclusions Dn → Dn× I, where Dn is the n-disk and I is
the interval. Cofibrations are retracts of maps which arise by cell attachments.

From this it follows that cofibrant objects are spaces which are retracts of
cell complexes; for ∅ → X to be a retract of A→ B we must have that A = ∅.
All objects are fibrant, as the map X → ∗ has all required lifts; given a map
Dn → X we can make a map Dn × I → X which is constant with respect to
the interval.

Example 2.26. The classical model structure on simplicial sets has as weak
equivalences the maps f for which the realization |f | is a weak equivalence. The
cofibrations are the objectwise injective morphisms. For fibrations we define
the horn to be the simplicial sets Λ(k, n) to be simplicial subset of ∆n gotten
by taking all the order-preserving maps from ∆n which do not have k in their
image. This can be seen as taking the union of all but one of the faces. A
fibration is then a map which has left lifts with respect to all the inclusions
Λ(k, n)→ ∆n, which is reminiscent of the definition of a Serre fibration as seen
above.

In this case all objects are cofibrant, as the map ∅ → Xn is injective for all
n. The fibrant objects are what are known as Kan complexes, and we will not
study these here.

Definition 2.27. Let C be a model category and X ∈ Obj(C). We define

QX as a factorisation of the map 0 → X as 0 → QX
p−→ X with p a trivial

cofibration. We define RX as occurring in X → RX → 1 by factoring the map
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to the terminal object. If X is cofibrant we put QX = X, and if X is fibrant
we put RX = X. Such maps are called (co)fibrant replacements

Example 2.28. If S denotes the model category of either topological spaces or
simplicial sets, then in the category of C-spaces we will be able to define a
cofibrant replacement by X 7→ B(C, C, X) which is the bar construction we will
see in Definition 4.14 and study in the subsequent section.

Definition 2.29. Let X ∈ Obj(C) an object of a model category, and [id, id] :
XqX → X the map induced by the identities. We call C(X) a cylinder object
of X if it fits in a factorisation X q X → C(X)

∼−→ X. Maps f, g : X → Y
are left homotopic if there is a map H : C(X) → Y such that, if we denote
[i0, i1] : X qX → C(X) for the structure map, we have H ◦ [i0, i1] = [f, g].

Similarly, a path object is an object P (X) with a factorisation of id× id :
X

∼−→ P (X) → X × X, and maps are right homotopic if there is a map
H ′ : X → P (X) such that H ′ ◦ (j0 × j1) = f × g.

If X is cofibrant, left homotopy defines an equivalence relation on C(X,Y ),
and if X is fibrant we get an equivalence relation on C(Y,X); furthermore if X
is cofibrant and Y fibrant the equivalence relations on C(X,Y ) agree, and the
set of equivalence classes is denoted π(X,Y ). Under certain conditions we also
get that composition is a well-defined map on homotopy classes. The details of
this can be read in [DS95]. We can thus define the following:

Definition 2.30. Let C be a model category. We define the homotopy cate-
gory of C, denoted Ho(C), by

Obj(Ho(C)) = Obj(C),Ho(C)(X,Y ) = π(RQX,RQY )

There is a map q : C → Ho(C), which is just the identity on objects and
which takes homotopy classes on maps. One can prove this is a functor.

Definition 2.31. Let F : C → D be a functor with C a model category with
q : C → Ho(C) the aforementioned functor. Then the left derived functor
of F is a functor LF with a natural weak equivalence LF ◦ q ⇒ F which is
terminal in this situation. This means that for any other L′F ◦ q ⇒ F we have
a factorisation through LF ◦ q. Putting this graphically means that we want a
(not necessarily commutative ) diagram

C D

Ho(C)

F

q
LF

which is a best approximation to make this commute.
The right derived functor, denoted RF , is defined analogously except we

now get an initial F ⇒ RF ◦ q.
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We will encounter this notion of a closest approximation to a commutative
diagram again in the form of Kan extensions at Definition 3.2, which we will
study in more detail. The situation there is quite different to the one we have
here, as there we will define Kan extensions using (co)limits, which we do not
have at our disposal in most homotopy categories.

The prime example we will see later is the homotopy colimit, which will be
the left derived functor of the ordinary colimit; the main purpose of this section
is to provide a background for this fact. We will however not prove this fact.
The main obstacle for a deeper treatment of this material is that the category
of diagrams SC for some indexing category C does have several choices for a
model structure, but that the theory of these structures is quite deep, and not
useful for the scope of this text. For a review of these model structures and their
relation to homotopy colimits the reader is referred to [SS12] and [Gam10].

A convenient method to define left derived functors is given by the following:

Lemma 2.32. Suppose F sends weak equivalences between cofibrant objects to
isomorphisms. Let Q be the cofibrant replacement functor. Then LF (X) =
F (Q(X)) defines a left derived functor of F .

Proof. See [GJ09], Remark 8.4.

Left derived functors between model categories are often also composed with
the map to the homotopy category of the image. To be specific, when is a functor
F : C → D with C,D model categories we often mean LF : Ho(C) → Ho(D)
where we implicitly derive the composite C → D → Ho(D).

Proposition 2.33. Let F be left adjoint to G and suppose F preserves weak
equivalences between cofibrant objects and G preserves weak equivalences between
fibrant objects. Then LF,RG exist and they are adjoint.

Secondly, suppose that F and G are as above, and additionally that for X
cofibrant, Y fibrant we have that X → GY is a weak equivalence iff its adjoint
FX → Y is. Then the adjoint functors above form an equivalence of categories
between Ho(C) and Ho(D).

For a proof see 8.7 and 8.8 of [GJ09]. A pair of functors satisfying the
conditions of the first part are called a Quillen adjunction. If the pair satisfies
the second part it is called a Quillen equivalence. Quillen equivalences are
the right kind of equivalences between model categories in a sense, in that it
allows us to make comparisons such as the following:

Example 2.34. The model category of (compactly generated and weak Haus-
dorff) topological spaces is Quillen equivalent to the model category of sim-
plicial sets. The functors are given by the topological realization | − | and
Sing(−) = Top(∆·,−). This signifies that Quillen equivalence is weaker than
normal equivalence of categories; we can prove that every topological space
is weakly equivalent to the realization of a simplicial set (which forms a CW
complex), but there is no way to make this a homeomorphism.
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2.4 Operads

Let (C,⊗, e) be a symmetric monoidal category. In this section we will introduce
operads, which are a concept allowing us to quickly encapsulate all the relevant
data to encode multiplicative structure in some situations. Roughly speaking
an operad encodes the level of coherence of an operation. Coherence can mean
associativity, which is the lowest level of coherence we will allow, or commu-
tativity, which is the strictest we can get. Often however we have something
which is in between. In our context we look at objects in a topological setting
so it is naturally interesting to look at operations which are commutative up
to homotopy or some other notion of weakness. It would of course be more
convenient to have actual commutativity, but some important operations turn
out not to be commutative.

The operads we define are sometimes called Σ-operads or symmetric operads.
In those contexts an operad which is non-Σ or non-symmetric is one which does
not have the so-called equidistributivity property which we will define below. In
a later section we will give a small taste of what these non-symmetric operads
could encode, but since it is not something we are interested in we will assume
our operads to be symmetric.

Definition 2.35. An operad O is a collection of objects in C indexed by N,
where the symmetric group Σn actso on O(n). It has a morphism η : e→ O(1),
and for n = k1 + ...+ kr a morphism O(r)⊗O(k1)⊗ ...⊗O(kr)→ O(n), which
we will usually denote by γ. These maps must satisfy some properties.

1. The first property is associativity: in the category of sets or spaces this
can be written

γ(x, γ(y1, z
1
1 , ..., z

1
n1

), .., γ(ym, z
m
1 , ..., z

m
nm) = γ(γ(x, y1, ..., ym), z1

1 , ..., z
m
nm)

Of course in general one would write a commutative diagram for this, or
write the general formula γ◦(id×γm) = γ(γ×idN ) where there is a shuffle
hidden within. This and subsequent diagrams can be found in [Ric20].

2. The second property is that η forms a unit: we require that both

e⊗O(n)→ O(1)⊗O(n)
γ−→ O(n)

and
O(n)⊗ en → O(n)⊗O(1)n

γ−→ O(n)

commute with the isomorphisms signifying the unitality of e in the monoidal
structure.

3. The third property is equidistributivity: if we have a permutation σ ∈ Σn
we get

O(n)⊗O(k1)⊗ ...⊗O(kn) O(n)⊗O(kσ(1))⊗ ...⊗O(kσ(n))

O(
∑
ki) O(

∑
ki)

σ⊗σ−1

γ γ

σ(k1 ... kn)
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Here σ ⊗ σ−1 is defined as the action on O(n) on one factor and per-
muting the other factors. With σ(k1, .., kn) we mean the permutation the
permutes the blocks of size k1, ..., kn. Additionally we require

O(n)⊗O(k1)⊗ ...⊗O(kn) O(n)⊗O(k1)⊗ ...⊗O(kn)

O(
∑
ki) O(

∑
ki)

id⊗σ1⊗...⊗σn

γ γ

σ1⊕...⊕σn

Here the symbol ⊕ denotes concatenation of permutations; an explicit
definition is given in section 2.5.

The equidistributivity property signifies that there is always a link between
operads and actions of permutations. We will give some examples of operads
later, when we can see more of what an operad does. An operad in itself is just
a sequence of objects in a category with some operations relating them, and
we would like to talk about the structure of the operad in relation with other
objects. What we want is comparable to a monoid in a monoidal category C
where we have maps C ⊗ ...⊗ C → C, but now we want to involve the operad in
these maps.

Definition 2.36. An object X of C is an algebra over a operad O if there are
morphisms θn : O(n) ⊗ C⊗n → C. These maps must be associative in a sense,
where the following diagram commutes (with N =

∑
ki):

O(n)⊗O(k1)⊗ ...⊗O(kn)⊗XN O(N)⊗XN

O(n)⊗X⊗n X

γ⊗id

θk1⊗...⊗θkn θN

θn

The unit O(1) must act as a unit (so e⊗X → O(1)⊗X θ−→ X commutes with
e⊗X → X). Furthermore, we have something akin to equidistributivity, as in
that the following diagram commutes:

O(n)⊗X1 ⊗ ...⊗Xn O(n)⊗Xσ(1) ⊗ ...⊗Xσ(n)

X X

σ⊗σ−1

θ θ

=

An algebra is also sometimes called an object with an action of the operad.
We can now discuss some examples of operads, as we now have an idea what
we mean by ”encoding how far from commutative an operation is”.
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Example 2.37. The commutativity operad is defined byO(n) = {e} the monoidal
unit, with all permutations acting trivially and all compositions just resulting
in the identity. This can be defined for any strictlty monoidal category. An
algebra over the commutative operad is an object with, specialising to n = 2,
a map µ : ∗ ⊗ X ⊗ X = X ⊗ X → X and a map η : e → O(1) = ∗. The fact
that µ is invariant under actions of σ ⊗ σ−1 means here that we can take the
permutation σ = (1 2) and σ acting trivially on ∗. This means that µ◦(σ·) = µ;
in categories of sets or spaces this becomes that µ(x, y) = µ(y, x), so this map
is commutative as the name of the operad suggests. The result is thus that we
have a strictly commutative monoid. The maps involving higher n work in a
similar fashion.

Example 2.38. Let C be closed category; this means that the normal homo-
morphism sets can be seen as objects of C, and that the homomorphism functor
thus obtained is adjoint to the monoidal product. The endomorphism operad
of an object C of C is defined by O(n) = C(C⊗n, C). Composition is defined by
composition of functions; given f ⊗ f1 ⊗ ...⊗ fn ∈ O(n)⊗ O(k1)⊗ ...⊗ O(kn),
we can define the result as, given an product of

∑
ki objects, first applying f1

to the first k1, f2 to the following k2 etc., and finally on the resulting n objects
we apply f . Every object is an algebra of its endomorphism operad by the
evaluation map.

Example 2.39. Further coherence conditions can also be defined using operads;
for example we could encode abelian groups by using an operad A with A(0) =
{0}, A(1) = {id,−} where − is the binary minus operation, and A(2) consisting
of the four operations sending a, b to a + b, a − b, b − a,−(a + b). We define
γ1(−,−) = id. Describing the higher levels of the operad can be done once we
have defined the associative operad, but is rather messy. Defining non-abelian
groups adds the operations resulting in b+ a and −(b+ a).

Remark 2.40. We will assume throughout that O(0) is the monoidal unit for
all operads O. The idea behind is that the empty product should always be

the unit. This then also gives us a map O(n) → O(n) ⊗ O(0)n
γ−→ O(0) = e

which in the case of spaces gives us what we will call an augmentation. In the
original definition by May in [May72] this is explicitly demanded, while other
authors have either considered only positive degrees or made the distinction
explicit. Suppose we do have an operad with O(0) not the unit and non-empty,
and suppose we are working in the category of sets. Then the higher levels of
the operad determine a structure on O(0); indeed an element of O(2) then gives
a map O(0) × O(0) → O(0). If all higher levels have one element as in the
commutative operad O(0) becomes a commutative monoid. If all higher levels
are the symmetric groups we can give it an associative structure. An algebra A
over such an operad will then have a map θ0 : O(0) → A, but all elements of
the image of this map will act as a unit: θ2(σ, θ0(τ), x) = θ2(σ, θ0(τ), θ1(∗, x)) =
θ1(γ2(σ, τ, ∗), x) = x where ∗ is the image of η, using the associative property.
Thus allowing non-trivial O(0) just introduces extra units, which we are not
interested in.
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Example 2.41. The ring operad R is given by R(0) = {0, 1}, R(1) = {id,−}
and R(2) generated by + and · (so we also get operations like a, b 7→ a − b
or (−a) · b). We use the diagonal map to express the distributive property
a · (b+ c) = a · b+ a · c. The ring structure on R(0) is the obvious one.

The following proposition allows us to greatly expand our list of examples of
operad algebras. The main application of this will be in defining the Barratt-
Eccles operad. It also allows us to freely work with algebras in simplicial sets,
as we can directly translate it to topological spaces.

Proposition 2.42. Let O be an operad in C, and F : C → D a lax symmetric
monoidal functor. Then F (O) is an operad in D. If X is an algebra over O,
then F (X) is an algebra over F (O).

Proof. Let O have structure maps γ, η; the structures on F (O) will be denoted
γ′, η′. We define η′ = η ◦ F , which is allowed as F (eC) = eD. Similarly we can
define γ′n = F (γn) ◦ φ where φ is the structure map making F lax monoidal.
Associativity holds as φ is natural and γ is associative. The action of the
permutative groups is given by the image under F of the action.

We define θ′ on F (X) by θ′n = F (θn) ◦ φ in the same way. Associativity
follows from the following:

θ′N ◦ (γ′n ⊗′ id)

= F (θN ) ◦ φ ◦ ((F (γn) ◦ φ)⊗′ id)

= F (θN ) ◦ φ ◦ (F (γn)⊗′ id) ◦ (φ⊗′ id)

= F (θN ) ◦ F (γn ⊗ id) ◦ φ ◦ (φ⊗′ id)

= F (θN ) ◦ F (γn ⊗ id) ◦ φ
= F (θN ◦ (γn ⊗ id)) ◦ φ

This can then be transformed using the associativity of θ to the desired term in
a similar fashion. Here we used the fact that F is a functor and φ is natural, and
that composition distributes over the monoidal product. It is also to be noted
that two copies of φ were contracted at some point; if one looks closely this is
because the term F (O)(n)⊗F (O)(k1)⊗ ...⊗F (O)(kn)⊗F (X)N is transformed
by φ in two parts (the operad terms and the X terms) which can be done at
once. Equidistributivity also follows: the action of σ ⊗′ σ−1 is the image of the
action of σ ⊗ σ−1 which can be split using the fact that F is lax symmetric.

Given an operad O in a category of spaces we can make an associated monad.
This is usually written

M(X) =

∞∐
k=0

O(k)×Σk X
⊗k

By ×Σk we mean that we take the normal product × (which plays the role of
the monoidal product here), but we divide out by an equivalence relation such
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that the action of Σk on both sides is carries over to an action on the total.
Explicitly, we define (f, σ(x1, ..., xk)) ∼ (σ · f, (x1, ..., xk)) where on the left side
we just permute the factors, and on the right we take the action which exists
by the definition of an operad. Alternatively, one can say that the product has
an action of Σk × Σk, and we divide out by elements of the form (σ, σ−1).

For the maps which make this functor a monad, we take as unit η × idX .
As the monoidal unit in the category of spaces is the one-point set we get that
η × idX(x) = (∗, x) which clearly is invariant under the action of Σ1.

For the composition map we take, where n = n1 + ...+ nk

M(M(X)) ⊃ O(k)× (O(n1)×Xn1)× ...× (O(nk)×Xnk)

→ O(k)×O(n1)× ...×O(nk)×Xn

→ O(n)×Xn ⊂M(X)

where the first map is just the shuffling of the factors, and the second is the
operad map γ. These maps combine into a proper map M(M(X)) → M(X)
because of the properties of the operad map.

Proposition 2.43. Let O be an operad, and M its associated monad. Then
algebras over O are equivalent to algebras over M .

Proof. A map f : MX → X is equivalent to a collection of maps fk : O(k)×Σk

X → X (for each of the structure maps in of the coproduct, take fn = f◦in). On
the other hand, an algebra over O should have a collection of maps O(k)×Xk →
X which is amongst other things invariant under the action of elements of the
form σ×σ−1, which is exactly what is defined by ×Σk . The other operad algebra
properties can also be checked relatively straightforwardly.

Let X be any object, and the setting as above. Then M(X) is an O-
algebra; looking at the computation of the composition map in M(X) we
see that this also serves as an algebra structure map. The associated func-
tor FO : X 7→ M(X) is also called the free algebra functor. The motivation
for this statement can be found in Lemma 2.9 of [J P97]. The idea is that it is
adjoint to the forgetful map which takes an algebra to its underlying space.

Remark 2.44. The fact that we can express algebras over an operad as algebras
over a monad has its benefits: any results we know about algebras of monads
now carry over to algebras of operads. For example, in Lemma 9.2 of [SS12] it
is shown that a certain category of algebras over an operad has all limits and
colimits. The category in question is one we will see in this text, but we will
not use the structure exhibited there.
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2.5 The Barratt-Eccles operad

Recall the definition of the permutation groups Σn = {bijections n→ n} where
n = {1, ..., n}. There are maps −⊕− : Σn × Σm → Σn+m, defined by

(σ ⊕ τ)(i) =

{
σ(i) if i ≤ n
τ(i− n) + n else

Also, given numbers j1, ..., jn and σ ∈ Σn, we define σ(j1, ..., jn) to be the
permutation in Σj1+...+jn which permutes the blocks of size ji according to σ.

Definition 2.45. The associative operad of sets is the operad defined by
O(n) = Σn, and composition maps defined by

γ(α, β1, ..., βn) = βα−1(1) ⊕ ...⊕ βα−1(n) · α(j1, ..., jk)

where βi ∈ Σji . The permutation groups act on this on the right.

In the article by J. Peter May [May74] where this operad was introduced, the
factor α(j1, ..., jn) was omitted and later rectified in an erratum in [CLM76], and
a simple write-out shows it is indeed necessary. We write a tuple as a tuple as
a tuple of blocks within the tuple for convenience, so we write xi = (x1

i , ..., x
ji
i );

the tuple (x1, ..., xn) is thus not an n-tuple but a concatenation of n tuples. We
get, with the permutations as in the definition,

γ(α, β1, ..., βn)(x1, ..., xn)

= βα−1(1) ⊕ ...⊕ βα−1(n)(xα−1(1), ..., xα−1(n))

= (βα−1(1) · x1
α−1(1), ..., βα−1(1) · x

α−1(1)
α−1(1), ..., βα−1(n) · x1

α−1(n)..., βα−1(n) · x
α−1(n)
α−1(n))

We see that the term α(j1, ..., jn) is necessary to align the permutations
with the proper arguments, as otherwise the permutation βα−1(1) would not be
acting on a predetermined block of length jα−1(1) but rather on the first jα−1(1)

arguments which may not form a block. While this is not a priori a problem,
we will see that equivariance is not satisfied without this condition.

Example 2.46. Before we fully check all properties to verify this is an operad, let
us look at what it means to be an algebra over this operad: suppose X is such a
set. Then we have a map θn : Σn ×Xn → X for all n. Equivariance forces the
definition of this map: θn(σ, (x1, ..., xn)) = θn(id, (xσ−1(1), ..., xσ−1(n)). We can
then write all expressions in terms of · = θ2(id,−). This multiplication map is
associative, as

x · (y · z) = θ3(γ2(id2, id1, id2), (x, y, z)) = θ3(γ(id2, id2, id1), (x, y, z)) = (x · y) · z

The definition of our associative operad thus gives sets with associative opera-
tions and a unit as algebras, which we know as monoids.
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Proposition 2.47. The associative operad forms an operad

Proof. We will not check associativity. The unit map obviously acts as a unit:
O(1) = Σ1 = {id}, and γ(id, σ) = σ. For the first equivariance condition,
we need that γ ◦ (σ × σ−1) = σ(jσ(1), ..., jσ(n)) ◦ γ. We compute, again on
(α, β1, ..., βn):

σ × σ−1(α, β1, ..., βn) = (α · σ, βσ(1), ..., βσ(n))

γ(α · σ, βσ(1), ..., βσ(n)) = (βα−1(1) ⊕ ...⊕ βα−1(n)) · (α · σ)(jσ(1), ..., jσ(n))

Here we use that permutations act on the right, and for the indexing of the
β-terms we use that σ(ασ)−1 = α−1. On the other hand, we compute:

σ(jσ(1), ..., jσ(n))γ(α, β1, ..., βn)

= (βα−1(1) ⊕ ...⊕ βα−1(n)) · α(j1, ..., jn) · σ(jσ(1), ..., jσ(n))

= (βα−1(1) ⊕ ...⊕ βα−1(n)) · (α · σ)(jσ(1), ..., jσ(n))

The two results are equal, so we see that this condition is indeed satisfied.

Since we have defined an operad in the category of sets, we could just take
the discrete variants of this set to get an operad in small categories or spaces.
This gives sensible results as it allows us to define associative monoids in these
categories, but we want more; we want to get a concept of algebras which
are associative but only commutative up to some notion of coherence. Such a
structure in the category of (small) categories is a permutative category. To
construct what the operad O which permutative categories are algebras of looks
like, let us look in degree 2: there are two 2-ary operations, namely µ and µ ◦ τ
with µ the multiplication and τ the symmetry isomorphism. On the level of
the operad this must mean that there is a map ◦τ between the two elements
of O(2) which is an isomorphism. The general pattern for this operad can be
easily described using the following concept:

Definition 2.48. Given a group G, we can form its translation category
denoted G̃ where the objects are the elements of G, and G̃(g, h) has one element
which we think of (or denote) as hg−1.

We can use the translation category construction to lift our associative op-
erad to an operad on small categories. The only new requirement is that now
the composition map is not only a map of objects (so, a map of sets as our
category is small), but a functor, so we also need to define it on morphisms.

Definition 2.49. The Barratt-Eccles operad is the collection Σ̃n in the
monoidal category (cat,×, 1). The composition map on objects is the same as
for the associative operad. The composition map on morphisms is given by

γ(σα−1, τ1β
−1
1 , ..., τnβ

−1
n ) = γ(σ, τ1, ..., τn)γ(α, β1, ..., βn)−1
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There is only one morphism between any two objects, so by definition this
defines the morphism γ(α, β1, ..., βn) → γ(σ, τ1, ..., τn). It is not the same as
applying γ to the objects σα−1, τ1β

−1
1 , ..., τnβ

−1
n seen as objects; this is almost

the case, but we can see that, attempting to write this in the same format as
the definition of γ on objects, we get terms of the form τασ−1(i)β

−1
ασ−1(i) which

do not fit in what we have defined above when we expand it:

γ(σα−1, τ1β
−1
1 , .., τnβ

−1
n )

= τσ−1(1)β
−1
α−1(1) ⊕ ...⊕ τσ−1(n)β

−1
α−1(n) · (σα

−1)(jα−1(1), ..., jα−1(n))

We will check the statement that this is a natural map by applying the left
map to a sequence of elements

(x[1, 1], ..., x[1, j1], ..., x[n, 1], ..., x[n, jn])

which we will abbreviate by the product notation
∏
i(x[i, 1], ...) as the rest of

the indices can be deduced from this. The reason that we have chosen this non-
conventional notation and not super- and subscripts is to improve legibility, not
to suggest any function-like property of the x. Applying to such a sequence
does not make any sense strictly speaking; the α, β, ... are objects in a category
without any meaning of action, but we can work with the permutations they
represent without any loss of correctness. We will also as a shorthand write
(τβ−1)i for τiβ

−1
i . We compute:

γ(σα−1, τ1β
−1
1 , .., τnβ

−1
n )γ(α, β1, .., βn)(

∏
i

(x[i, 1], ...))

= γ(σα−1, τ1β
−1
1 , .., τnβ

−1
n )

⊕
i

βα−1(i) · (α(j1, ..., jn)(
∏
i

(x[i, 1], ...))

= γ(σα−1, τ1β
−1
1 , .., τnβ

−1
n )

⊕
i

βα−1(i)(
∏
i

(x[α−1(i), 1], ...))

= γ(σα−1, τ1β
−1
1 , .., τnβ

−1
n )(

∏
i

(x[α−1(i), β−1
α−1(i)(1)], ...))

=
⊕
i

τσ−1(1)β
−1
α−1(1) · (σα

−1)(jα−1(1), ..., jα−1(n))(
∏
i

(x[α−1(i), β−1
α−1(i)(1)], ...))

=
⊕
i

τσ−1(1)β
−1
α−1(1)(

∏
i

(x[α1(ασ−1(i)), β−1
α−1(i)(1)], ...))

=
∏
i

(x[σ−1(i), β−1
α−1(i)(βα−1(i)τ

−1
σ−1(i)(1))], ...)

=
∏
i

(x[σ−1(i), τ−1
σ−1(i)(1)], ...)

= γ(σ, τ1, .., τn)(
∏
i

(x[i, 1], ...))

The fact that operads are preserved under lax monoidal functors gives us
various new operads for free. The first is an operad in simplicial sets given
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by N Σ̃n. From this we can get to an important milestone: the operad BΣ̃n
on topological spaces. These two form what is more commonly known as the
Barratt-Eccles operad.

In practice it is easier to work with the category version or the simplicial
version; the algebraic properties are more clearly expressed in the categorical or
simplicial context. As an example, BΣ̃1 is a point. However, for BΣ̃2 we get
two points, with two lines (1-cells) for the isomorphism between the two objects,
then two 2-cells etc. This is the example from Example 2.19, which yields the
infinite-dimensional sphere which is well-understood but which contains a lot
more data than the simplicial set or category underlying it. For BΣ̃3 we get six
points with 6(6− 1)/2 ∗ 2 = 30 lines. This further escalates as between any two
points we are building a copy of S∞ but there are also faces and higher simplices
connecting these. These spaces do have some favourable properties (they are
contractible and have a free action by Σn as we will see) but in practice we will
not use these in this text.

2.6 The action of the Barratt-Eccles operad

We can now define the more useful property of the Barratt-Eccles operad on
certain interesting topological spaces:

Theorem 2.50. A permutative category C carries an action of the Barratt-
Eccles operad of categories.

Proof. We define θ : Σ̃n ⊗ Cn → C by θ(α,C1, ..., Cn) = Cα−1(1) ⊗ ...⊗ Cα−1(n).
We check: θ(τ ⊗ τ−1(σ,C1, ..., Cn)) = θ(τ · σ,Cτ(1), .., Cτ(n)) = Cσ−1τ−1(τ(1)) ⊗
...⊗ Cσ−1τ−1(τ(n)) = Cσ−1(1) ⊗ ...⊗ Cσ−1(n)

Corollary 2.51. Let C be a permutative category. Then NC and BC are alge-
bras of the Barratt-Eccles operad in simplicial sets or spaces

Proof. This follows by the statement of Proposition 2.42 and the fact that both
the nerve and the geometric realization functors are lax monoidal.

The most notable occurrence of the Barratt-Eccles operad is the following:

Theorem 2.52. Infinite loop spaces, i.e. spaces X for which there are homotopy
equivalences X ' ΩX1 ' Ω2X2 ' ... ' ΩnXn ' ... for all n, are algebras of the
Barratt-Eccles operad.

The converse also holds up to weak equivalence. This is known as the recog-
nition principle and is due to J.P. May; a precise statement can be found in
theorem 1.3 of [May72].

2.7 E∞-operads

In the literature one often sees the notion of an E∞-operad. This is a general
term for operads modeling commutativity relations holding up to weak equiva-
lence.
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Definition 2.53. Let O be an operad of spaces. Then O is an E∞-operad if
all O(n) are contractible have a free Σn-action.

Recall that an action G on a set X is free if g · x = h · x implies that g = h,
or equivalently g · x = x implies that g is the unit. Note that this is quite strict
and rules out many spaces we intuitively think of as symmetric; for a space
this means that there is no point or line or plane of symmetry. Giving a space
with a free action of a symmetric group even of order 2 seems quite hard in the
topological setting, but as a category we see that Σ̃2 has such a free action; we
can then use the classifying space to get a topological space with this property.

Proposition 2.54. The Barratt-Eccles operad is an E∞-operad.

Proof. The action is given on the level of simplicial sets by

τ · (σ1 → ...→ σn) = τσ1 → ...→ τσn

with the unique maps between them. Since every σ induces an automorphism
of the permutation group we get that τ · σ = τ · σ′ =⇒ σ = σ′.

For the contractability, we notice that this is an elaboration of the example
at Example 2.19, as the category studied there is exactly Σ̃2. Since every object
is initial we also apply Proposition 2.23. In general, the homotopy between the
inclusion of a point and the identity will be

Hn(0, (σ1, ..., σn) = (σ0, ..., σn),

Hn(n+ 1, (σ0, ..., σn)) = (id, ..., id),

Hn(i, (σ0, ..., σn)) = (id, ..., id, σi+1σi...σ0, σi+2, ..., σn)

This gives a simplicial homotopy as one can check, and we are done.

Definition 2.55. Let O,P be operads, and f a family of morphisms fn :
O(n) → P (n). Then f is a morphism of operads if fn(γO(x, y1, ..., yk) =
γP (fk(x), fl1(y1), ..., flk(yk)) for x ∈ O(k), yi ∈ O(li), and f1 ◦ ηO = ηP .

Examples:

• A morphism from an operad O to the endomorphism operad on a space
gives that space the structure of an O-algebra.

• The path component functor π0 where the image is now seen as a discrete
topological space. This means that if O is an operad of topological spaces,
then the π0(O(n)) also form an operad of spaces and the maps O(n) →
π0(O(n)) are compatible with the operad structure.

This gives the class of operads within a monoidal category the structure
of a category itself. The commutative operad defines a terminal object in the
category of operads of sets (or any monoidal category where the terminal cat-
egory is the monoidal unit), and the initial object is given by the operad with
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O(0) = {0}, O(1) = {id}, O(n) = ∅ for n > 1. Remember that we silently
assumed O(0) = e; if we do not there is obviously no initial object.

The term E in E∞ comes from the idea that ”everything commutes up to
homotopy”. There is another variant, called An or A∞ where ”everything is
associative up to homotopy”. The degree in between A∞ and E∞ are the En-
operads, where A∞ is equivalent E1. These operads encode operations which
are commutative up to level n. This notion is generally of lesser interest, as
in some important categories (such as the category of sets or abelian groups)
being E2 gives all the higher commutativity as well by using the Eckmann-Hilton
argument. In topological spaces these do become more interesting: n-fold loop
spaces are En-algebras. The converse also holds up to weak equivalence. This
also works when we let n go to infinity, and we get the aformentioned result
that E∞-algebras of topological spaces are infinite deloopings.

We will not give a precise definition of An of En-operads, as this is not in
the scope of this text.

From this point on we will call all algebras of the Barratt-Eccles operad
E∞-spaces. The reason is that for any other E∞-operad O the category of
O-algebras is Quillen equivalent to that of the Barratt-Eccles algebras. This
statement of course relies on the fact that there is a model structure on operad
algebras, and also on a model structure for the category of operads. The theorem
would require much more development of the homotopy theory surrounding
operads which we will not do in this text. A reference for this fact is [BM03];
theorem 4.4 and the consequent remark 4.6 give the exact statement. The
definition of an E∞-operad is that it has some cofibrancy property and that
there is an operad morphism with some specific properties to the commutative
operad. This also gives the parallel to the A∞-operads mentioned above; these
are operads with the same properties but the morphism in this case is to the
associative operad.

3 I-spaces

In this section we will explore the concept of I-spaces. These are some form
of coherently indexed families indexed by the category I which we will define.
The interesting fact is that the category of I-spaces carries a monoidal product
derived from the product in the category I, and that commutative monoids in
this structure are somewhat less strict than being a space with a commutative
operation. They will tie into the Barratt-Eccles operad we defined earlier; the
correspondence is that commutative I-spaces are equivalent to E∞-spaces up
to weak equivalence.

3.1 Definitions

Definition 3.1. The category I has the set N on objects, denoted in bold
as in n. We define I(m,n) to be the injections {1, ...,m} → {1, ..., n} (so
n corresponds to {1, ..., n} while 0 corresponds to the empty set). Let S be a
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category of spaces. An I-space X is a functor I → S. The category of I-spaces
is denoted SI , with morphisms being the natural transformations between these
functors.

In the above, a ”category of spaces” can be different depending on the con-
text; it can be useful to work with either simplicial sets or topological spaces
depending on the situation. The category I is not the only setting in which
one might be interested. The structures obtained by looking at functors from
a small monoidal category to a category of spaces have a name: they are called
diagram spaces. Later on we will broaden our scope to K-spaces where K can
be any permutative category.

Let us spell out what it means to be an I-space. To start with, we need
a sequence of objects X(n). Next to that we need, for every injection f :
n → m a map X(f) : X(n) → X(m) which should of course behave well
under composition. When the context is clear this map will also be denoted f∗
When taking n = m, we see that we get a group homomorphism from Σn to
Aut(X(n)), so an action of the permutation group.

A morphism of I-spaces is a natural transformation of functors, so F : X →
Y is an I-indexed collection of morphisms of spaces such that the following
commutes:

X(n) X(m)

Y (n) Y (m)

X(f)

F (n) F (m)

Y (f)

Examples:

• For any space S we can form the constant I-space n 7→ S where all
functions are mapped to the identity. When the space is initial this is the
initial object, and vice verse for the terminal object.

• The functor n 7→ {1, ..., n} as discrete spaces. The injections are mapped
to themselves.

• For any based space (X,x0), the functor n 7→ Xn, where Xn is the n-fold
product of X. For injections f : n → m we get (f∗(x1, ..., xn))i = xj if
f(j) = i or j = 0 whenever i is not in the image of f , resulting in the
basepoint x0.

• The matrix groups n 7→ O(n) over any field. Recall that a permutation
matrix of a permutation σ ∈ Σn is the matrix obtained by permuting
the columns of the identity matrix of dimension n. Conjugation by a
permutation matrix gives an action of the Σn on O(n). We also have for
every n a distinguished map α : n→ n+1 which misses the element n+1;
this map in I we associate to the map of matrices

A 7→
[
A 0
0 1

]
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where we put one extra 1 on the diagonal and fill with zeroes. We can
write all maps j ∈ I(n,m) as a composition j : σ ◦ αr for some σ ∈ Σm,
and thus we can define the map j∗ : O(n) → O(m) by first applying
the map associated to α a total or r times and then conjugation by the
permutation matrix of σ. This gives a well-defined functor, as we can
write

σ ◦ αr ◦ τ ◦ αp = σ ◦ (τ ⊕ idr) ◦ αr+p

We also see that (τ⊕ idr)
−1 = τ−1⊕ idr, and that the permutation matrix

of τ ⊕ idr is the permutation matrix of τ with 1 on the diagonal for all
higher rows and columns. One can then write out that this means that
this indeed commutes with composition. It is clear that the permutation
matrices are invertible and orthogonal. The operation associated to α
also clearly makes orthogonal matrices out of orthogonal matrices. In
conclusion this indeed gives a functor.

The above is carried out while viewing O(n) as a category with one object
and arrows for all the elements.

We could have done the same for the groups GL(n) and U(n) or their
special counterparts.

• The spheres Sn, with the small change that we set S(n) = Sn−1, S(0) = ∅.
An injective map f : n→m is taken to the inclusion

(x1, ..., xn) 7→ (xf−1(1), ..., xf−1(m))

where xf−1(i) = 0 if there is no j with f(j) = i; intuitively this is the
same as applying the function f to the set of n coordinates of Sn−1. This
takes an element of S(n) to an element of S(m) as the sum of all the
squares of indices is still 1. Functoriality follows by intuitively seeing that
if f(j) = j and g(j) = k that then S(g)((S(f)(x)) = S(g ◦ f)(x) as the
k’th coordinate in both will be xi and this works for all i, j, k. This means
that one formally gets that

S(g)(xf−1(1), ..., xf−1(m)) = (xf−1(g−1(1)), ..., xf−1(g−1(m)))

which is somewhat counter-intuitive but does correspond to the interpre-
tation of injective functions applied to the set of coordinates when one
writes it out in an example.

The category I has a monoidal structure denoted t. We define m t n to
be the object associated to m + n. If f : m1 → n1, g : m2 → n2 we define
f t g : m1 tm2 → n1 t n2 to be the injection which acts by f on the first m1

and by g on the last m2. The monoidal unit is 0. The associativity conditions
are straightforward. The monoidal structure is symmetric by τm,n : m t n →
n tm being the permutation which swaps the two blocks. This is not a strict
symmetry.

We want to somehow extend this monoidal structure from I to I-spaces.
We could of course put (X ×Y )(n) = X(n)×Y (n), but would not give us very
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interesting results in our context: all objects would be monoids by using the
projection functions, and we would not be able to relate to t whatsoever. What
we want is that monoids come with maps X(n) × X(m) → X(n tm) for all
n,m.

We first define, for I-spaces X,Y , (X × Y )(n,m) = X(n)× Y (m). This is
an example of an I2-space. What we have now is a diagram of the form:

I ×I S

I

X×Y

t

What we want now is to extend this to get a third map I → S which ”ap-
proximates” a completion of this diagram; to make this a unique construction,
we ask that it is the best approximation, in that it is closest to making the
diagram commute. This is the concept of a left Kan extension:

Definition 3.2. Given functors F : A → B and G : A → C, we define the
left Kan extension of F by G to be a functor LanGF : C → B with a natural
transformation η : F ⇒ LanGF ◦G which forms an initial pair with this property.

Explicitly, given the data as in the definition, if the left Kan extension exists,
we get a diagram like:

A B

C

F

G

η

ε

where η : F ⇒ LanGF . If there is such another arrow L : C → B with a
natural transformation δ : L ◦G ⇒ F , we get a unique natural transformation
ε : LanGF ⇒ L as above such that δ = ε ◦ η. Note that in the diagram the
functors may not commute: the Kan extension is a ”closest approximation”,
and a directly commuting functor may not exist. The natural transformations
do commute. If there is a way to make the diagram commute then this forms
the Kan extension; the natural transformation η in that case is the identity
which we can precompose with any other way to approximate the diagram to
give a factorisation.

Left Kan extensions can be calculated pointwise under favourable conditions.
For a functor G : A → C and an object C ∈ C, we define the category G ↓ C
to have as objects pairs (A, f) with A ∈ A and f : G(A)→ C, with morphisms
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being the g : A→ A′ such that the following diagram commutes:

G(A) G(A′)

C

f

G(g)

g

Lemma 3.3. If the following colimit exists for all D ∈ C we may define the left
Kan extension by

(LanGF )(D) = colim
G↓D

F ◦ U

where U is the forgetful functor G ↓ D → A

Lemma 3.4. We have that LanG is adjoint to precomposition with G, so we
get the following property:

BC(LanGF,L) = BA(F,L ◦G)

The proof of both these lemmas can be found in chapter IV.1 of [Ric20]. We
will not go into full detail in this subject, and leave details such as the fact that
Kan extensions are stable under natural isomorphisms to the reader.

We can now define the monoidal product X � Y in the category of I-spaces
to be the left Kan extension of X × Y along t; the diagram takes the shape

I ×I S

I

X×Y

t
X�Y

Proposition 3.5. The category of I-spaces is a symmetric monoidal category
with this structure.

Proof. For associativity we can draw the diagram

I3 S × I S

I2

I

(X×Y )×id

t×id

id×Z

(X�Y )×id

t

(X�Y )�Z

Here (X � Y ) � Z is the Kan extension of (id × Z) ◦ ((X � Y ) × id) along
t. If we let η be the natural transformation belonging to the triangle defining
(X � Y )× id, and ε the one for (X � Y ) � Z, we can compose. Note that

η : (X × Y )× id⇒ ((X � Y )× id) ◦ (t × id)
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so by composing we get the natural transformation

(id× Z) ◦ η : (X × Y )× Z ⇒ (X � Y )× Z ◦ (t × id)

The result is that we get

ε ◦ (id× Z) ◦ η : (X × Y )× Z ⇒ ((X � Y ) � Z) ◦ t ◦ (t × id)

which exhibits the outer triangle as a left Kan extension, so (X � Y ) � Z as
the extension of (X × Y ) × Z along t ◦ (t × id). These two functors can by
associativity be seen as naturally isomorphic to X×(Y ×Z) and t×(id×t). We
can form the same diagram to exhibit X � (Y �Z) as the Kan extension of the
latter two, so we must have that the two extensions are naturally isomorphic.

The unit is the I-space which is usually thought of as I(0,−), but any I-
space e where e(n) has one element for each n and all maps are sent to the trivial
map will do. To see this, we get (X � e)(n) = colimt↓nX × e = colimt↓nX =
X(n) as the colimit runs over all the X(m),m ≤ n with the maps from the
injections; X(n) is clearly a colimiting cocone for this diagram.

For commutativity we define the map τ for all n,m by the swapping map
s : X(n) × Y (m) → Y (m) × X(n). More explicitly, when we also involve the
block swapping map χ : n tm→m t n, we get the description

τ(X � Y )(n) = colim
t◦χ↓n

s ◦ (X × Y ) = colim
t↓n

Y ×X = (Y �X)(n)

Here we used the fact that ◦χ and the swapping map are isomorphisms and thus
do not change the colimit. Clearly τ ◦ τ = id. Other (larger) diagrams are left
to the imagination of the reader.

Example 3.6. For constant I-spaces written CS , we see that

(CS � CS′)(n) = colim
t↓n

S × S′ = S × S′ = CS×S′(n)

Example 3.7. In general there is no clear picture of what a product of I-spaces
looks like. Take for example O � O; when we have developed the technique of
coends in the next section we can write (O�O)(n) =

∐
m1,m2

I(m1 tm2,n)×
O(m1)× O(m2)/ ∼. The equivalence relation is given by (h ◦ (f t g), A,B) ∼
(h, f∗A, f∗B). This can be interpreted as meaning that it is all the possible
pairs of matrices with a given way to place them into an n × n-matrix, with
the understanding that shuffling one of the matrices is the same as shuffling the
way they are put in.

The fact that we have an adjunction as in Lemma 3.4 means that we can at
least work with maps out of X�Y ; we get that SI(X�Y, Z) ∼= SI

2

(X×Y, Z◦t).
This means that a family of maps (X � Y )(n)→ Z(n) is equivalent to a family
of maps X(m)× Y (n)→ Z(m t n).

Let us analyse what it means to be a monoid in this category; suppose X
is such a monoid. Then we have a map X �X → X of I-spaces, which by the
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adjunction described above corresponds to a map X ×X → X ◦t of I2-spaces.
This means that for every n,m we get a map X(n)×X(m)→ X(n tm).

If we have a commutative monoid, we get an isomorphism τ : X � X →
X �X. If τ also denotes the corresponding map under the adjunction, we get
a square

X(n)×X(m) X(m t n)

X(m)×X(n) X(n tm)

τ X(χ)

Here χ denotes the n,m-shuffle.
Examples:

• Constant I-spaces of monoids can be given a monoid structure using the
normal multiplication.

• The ortogonal groups n 7→ O(n). The multiplication is given by

(A,B) 7→
(
A 0
0 B

)
where the 0’s denote blocks of zeroes of appropriate size. We view O(0)
as consisting of only the empty matrix, which acts as a unit. It is to be
noted that this structure on the orthogonal groups has nothing to do with
their multiplicative structure

• The product spaces n 7→ Xn for X based space; the maps Xn × Xm →
Xn+m are the obvious ones. As explained before we need the designated
basepoint to define the actions of the injections.

• The sphere I-space we defined by S(n) = Sn−1 does not define a monoid.
When one tries to write down the obvious monoidal product this turns
out to be not associative by the fact that the squares of indices must add
up to 1.

3.2 Coends and ends

Coends are a type of colimit that appears frequently in the theory. The use for
them stems from the fact that there are some very useful theorems regarding
the manipulation of coends and their covariant counterpart, ends. Coends over
some of the most elementary functors yield very convenient results: for example
the set of natural transformations between functors F and G is just the end
over the homomorphism-set functor C(F (−), G(−)). Variations of this fact in
combination with for example the Yoneda lemma yield very useful identities
which we can utilise to talk about abstract constructions such as products of
I-spaces and the homotopy colimits we will see later in a more unified way.

Most of the material in this section is taken from [Lor15]. [Ric20] also
discusses (co)ends in chapter IV.4. The article [HV92] also defines coends,
much in the same (non-standard) way we do here.
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Definition 3.8. Let P : Cop × C → S be a functor. We define the coend of P
to be the space

∐
c∈C P (c, c)/ ∼ where the equivalence relation ∼ is generated

by P (c, c) 3 P (fop, id)(x) ∼ P (id, f)(x) ∈ P (d, d) where x ∈ P (d, c). In general
the coend can be described as the coequalizer of the diagram∐

f :c→d

P (d, c)
f∗−−→−−→
f∗

∐
c∈C

P (c, c)

Dually, we define the end by the subspace of
∏
c∈C P (c, c) of those x for which

for all f : c → d we have P (id, f)(xc) = P (fop, id)(xd) which can similarly be
described by an equalizer.

We denote coends by integral signs with index at the top (like
∫ c∈C

P (c, c)),
and ends using integral sight with index at the bottom. When the context is
clear we will not denote the ambient category or the variables in the functors.

One special situation will be so prevalent that we will use special notation for
it: when F : Cop → S, G : C → S we write F ⊗G for the coend

∫ c
F (c)×G(c).

Also, when F : D × Cop → S and G as before we can take the functor D 7→
F (D,−) ⊗ G, which we will also denote by F ⊗ G. The same situation can
occur with G, so in certain cases F ⊗G may be a functor with two arguments.
The ”tensor” notation we use is unfortunately also used for monoidal categories;
while the tensor product does give a monoidal structure, we will not study it.
Monoidal structures will not be used in this section, so all tensor symbols denote
will the here-defined tensor product.
Examples:

• Let ∇ be the functor ∆ → Top, [n] 7→ ∆n where ∆n is the standard n-
simplex. Let X be a simplicial set, and remember that simplicial sets are
functors ∆→ Set. Then we recover the geometric realization of X:

X ⊗∇ =

∫ [n]∈∆

Xn ×∆n = |X|

• Let F,G be functors C → S. The set of natural transformations from F
to G is precisely the end

∫
c
D(F (c), G(c)). A natural transformation is for

all c ∈ C a function fc : F (c) → G(c) such that for g : c → d we have
G(c) ◦ fc = fd ◦ F (g); this is a direct translation of giving an element of∏
C D(F (c), G(c)) which satisfies the condition given in the definition of

an end.

• Since ends are equalizers on products and coends are coequalizers on co-
products in a sense, they are limits and colimits respectively. We therefore
get the identities

S(

∫ c

P (c, c), D) =

∫
c

S(P (c, c), D)

and ∫
c

S(P,D(c)) = S(P,

∫
c

D(c))
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• The integral notation suggest that there is some similarity between ordi-
nary integrals and (co)ends. One similarity is that we have a property
which is often named the ”Fubini theorem”:∫

(c,e)

F =

∫
c

∫
e

F =

∫
e

∫
c

F

We will not utilize this fact, but it gives some light as to why we use
this notation. The ”Fubini” term comes from analysis where a similar
statement holds for integrals; this is one of the reasons for the use of the
integral sign.

• If we define homS(X,Y ) =
∫
c

hom(X(c), Y (c)), we get

homS(X ⊗D Y,Z)

=

∫
c

S(

∫ d

X(c, d)× Y (d), Z(c))

=

∫
c,d

S(X(c, d)× Y (d), Z(c))

=

∫
c,d

S(Y (d),S(X(c, d), Z(c)))

=

∫
d

S(Y (d),

∫
c

S(X(c, d), Z(c)))

= homD(Y, homS(X,Z))

Here we used the above properties. This functor is often called the internal
homomorphism functor. If we combine this statement with the first item
we get a proof of Proposition 2.16.

• We have that ∗⊗X ∼= colimX. A similar statement holds for limits using
the internal homomorphism functor described above. This means that all
colimits are coends, and we have in turn defined coends by colimits. The
concept of a coends does not add anything that we could not have defined
before because of this, but it turns out that many definitions and proofs
can be stated more compactly using the concept of (co)ends and their
properties we describe in this chapter.

The following lemma is often called the co-Yoneda lemma, or sometimes the
”Ninja Yoneda lemma”:

Lemma 3.9. Let X : C → Set, α : D → C be functors. Then we get a natural
isomorphism

X ◦ α ∼= C(α(−),−)⊗X

Proof. Let Y be any set. We denote morphism spaces in sets by [−,−]. We have
that [C(α(d),−) ⊗X,Y ] = [

∫ c C(α(d), c) ×X(c), Y ] by definition. By the fact
that coends are colimits dual to ends this is equivalent to

∫
c
[C(α(d), c)×X(c), Y ],
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which by the exponential law in sets is equivalent to
∫
c
[C(α(d), c), [X(c), Y ]].

However, ends over morphism spaces in sets correspond to natural transforma-
tions, so this is equivalent to SetC(C(α(d)),−), [X(−), Y ]). The first of these two
functors is exactly the Yoneda functor, so by the Yoneda lemma we get that this
is [X(α(d), U ]. Since all the steps above were isomorphisms which are natural
in d, we can again use the Yoneda lemma to get that C(α(d),−)⊗X ∼= X(α(d))
as desired.

The co-Yoneda term comes from the fact that when one dualizes the above
statement to the end case one gets

∫
c
Set(C(α(d), c), X(c)) ∼= X(α(d)); this uses

that the ⊗-operation is dual to the morphism-set functor. This is, combined
with the natural transformation-set described as an end, precisely the normal
Yoneda lemma.

Remark 3.10. In terms of coends the formula for the product of I-spaces reads

X � Y =

∫ (n,m)

I(n tm,−)×X(n)× Y (m)

This follows from the general formula LanFG =
∫ cD(F (c),−) × G(c) in an

appropriate setting. Using this description the statements about associativity
and commutativity take the flavour of pure coend-manipulation.

The coend-formula mentioned above allows us to define a monoidal structure
on any category of diagram spaces or sets, as long as the indexing category is
monoidal. For a monoidal category C,t we define:

X � Y =

∫ (c,c′)

C(c t c′,−)×X(c)×X(c′)

This general product is known as Day convolution. It is a very convenient
product as we will find out; one of its more abstract properties that we will not
discuss is that it makes the Yoneda functor monoidal:

(C(a,−) � C(b,−))(e)

=

∫ (c,c′)

C(c t c′, e)× C(a, c)× C(b, c′)

∼=
∫ c

C(c t b, e)× C(a, c)

∼= C(a t b, e)

Here we used the Fubini theorem and the co-Yoneda lemma.

Remark 3.11. There is a general result about the Day convolution product:
(commutative) monoids in SetC are equivalent to (symmetric) lax monoidal
functors C → Set. A proof of this fact and a more elaborate treatment of the
Day convolution can be found in section 9.8 of [Ric20].
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The way we have introduced (co)ends above is not the usual definition but
rather a consequence of it. The usual definition exhibits a (co)end as a univer-
sal construction. We will give the definition for coends as these will be more
prevalent in the rest of this text. It is mentioned for completeness, but will not
be used in this text.

Definition 3.12. Let F : Cop×C → D be a functor, and f : d→ d′ a morphism
in C. We call w a cowedge for F if there is a family of maps d → F (c, c) for
c ∈ C which make the following diagram commute for any f : d→ d′ a morphism
in C:

F (d′, d) F (d, d)

F (d′, d′) w

F (f,id)

F (id,f)

We define the coend of F to be an initial cowedge, i.e. for any other cowedge w′

we have a map w → w′ which commutes with the diagram we have given above
for all f .

A very useful property of (co)ends is the ”freshman’s dream”:

Lemma 3.13. Let C be a category where the product functor preserves colimits.
Let F : Cop × C → E , G : Dop ×D → E be functors. Then∫ (c,c′,d,d′)∈C2×D2

F (c, c′)×G(d, d′) = (

∫ (c,c′)

F (c, c′))× (

∫ (d,d′)

G(d, d′))

Proof. We have that∫ (c,c′,d,d′)∈C2×D2

F (c, c′)×G(d, d′) =

∫ (c,c′) ∫ (d,d′)

F (c, c′)×G(d, d′)

This is due to the Fubini theorem. By the fact that the product preserves
colimits and thus coends, and the fact that F is mute in D we can say∫ (c,c′) ∫ (d,d′)

F (c, c′)×G(d, d′) =

∫ (c,c′)

(F (c, c′)×
∫ (d,d′)

G(d, d′))

By the same fact on the other half of the formula we can get the result.

The main class of examples of categories where the product preserves col-
imits is formed by cartesian closed categories. Note that since we can express
colimX = ∗⊗X it follows that categories where coends are preserved by prod-
ucts have all colimits preserved by products.
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3.3 Homotopy colimits

We now introduce homotopy colimits. We can define these using either simplicial
sets or topological spaces, but we will mainly use the simplicial variant. As
stated in the conventions we assume all non-named categories to be locally
small, and from here on we assume them to be small as well. This means that
any category we take a homotopy colimit over is small.

The idea behind homotopy colimits is that ordinary colimits are not well-
behaved with respect to homotopy theory. For example the pushout does not
respect weak equivalence; an example of this is the pushout ∗ tSn Dn+1 of
disk and a point along a sphere. This pushout is Sn+1 which one can visualize
for n = 0 by joining the ends of an interval to make a circle and for n = 1
by pinching the edges of a disk shut to make a sphere. The space Dn+1 is
contractible so weakly equivalent to ∗, so if the pushout would preserve weak
equivalence we would expect this to be the same as or at least weakly equivalent
to ∗ tSn ∗. The latter is of course just a point, so the pushout does not behave
well enough for our purposes. This example and more background on homotopy
colimits can be found in [Dug].

Definition 3.14. A bisimplicial set is a simplicial object in the category of
simplicial sets.

The diagonal of a bisimplicial set X is the simplicial set [n] 7→ (Xn)n, and
is denoted d(X).

By what was stated in Remark 2.7 we can write bisimplicial sets using double
indexes.

Definition 3.15. A simplicial space is a simplicial object in the category of
topological spaces.

The geometric realization of a simplicial space X is given by∫ [n]∈∆

Xn ×∆n

This is the same formula as for simplicial sets, except that now Xn has
a given topology. When Xn is discrete this coincides with the definition of
geometric realization of a simplicial set.

In what follows we will give a simultaneous treatment for diagrams of sim-
plicial sets or topological spaces. For both we will look at a simplicial object
in their categories; these form respectively bisimplicial sets or simplicial spaces,
and we will for convenience call both these simplicial spaces. The treatment
for simplicial sets will use the diagonal, and the variant for spaces will use the
realization of a simplicial space. The following lemma justifies why we can take
these different approaches:

Lemma 3.16. Let X be a bisimplicial set. Then realization of the simplicial
set |d(X)| is equivalent to the realization of the simplicial space [n] 7→ |Xn|.
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A proof of this statement can be found in section X.8 of [Ric20], or the more
original on page 94 of [Qui73]. The proof comes down to the fact that we can
show this for representable bisimplicial spaces. By the fact that bisimplicial
spaces are presheaves and thus colimits of representables this completes the
proof.

In what follows let X be a functor A → S, where S is either the category of
simplicial sets or topological spaces as usual.

Definition 3.17. The simplicial replacement of X is the simplicial space
srep(X) defined by

srep(X)n =
∐

a0←...←an

X(an)

Here the a0 ← ...← an are chains of maps in A.
If S = sSet, we define

hocolim
A

X = d(srep(X))

If S = Top, we instead define

hocolim
A

X = |srep(X)|

For both cases we will also use the shorthand hocolimAX = XhA

Note the dependency on the chain an → ... → a0; we will denote elements
of the homotopy colimit by tuples (an → ... → a0, x). A simplicial structure
is in both cases defined using the chains similar to how the simplicial structure
on the nerve of a category is defined, but the direction of the chains is indeed
reversed as the above notation suggests. The only notable distinction we need
to make is the case

dn(an
f−→ an−1...→ a0, x) = (an−1 → ...→ a0, X(f)(x))

The bisimplicial structure on srep(X) for X a simplicial set follows by taking
defining the second simplicial structure by f(an → ... → a0, x) = (an → ... →
a0, f(x)). We will not work with this simplicial structure, so we will not define
a notation for it. The simplicial structure on the diagonal is given by f(an →
... → a0, x) = (f(an → ... → a0), f(x)) where the simplicial action on chains is
defined as above.
Examples:

• The homotopy colimit over a constant diagram is the nerve: hocolimA ∗ =
NA. This is clear in the simplicial case, and the topological case it follows
from the observation that srep(∗) = NA.

• It is in general much harder to give explicit computations of homotopy
colimits of diagrams we are interested in. If we take for example the I
space n 7→ Xn for some space X, we get that its homotopy colimit is
the space

∐
nN(Σ̃n) ×Σn X

n, which is the free algebra induced by the
Barratt-Eccles operad. We will look at this some more later, and a full
account can be found in [Sch07].
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Remark 3.18. There is an alternative formula for homotopy colimits in terms of
coends. It is the original definition of the homotopy colimit given by Bousfield
and Kan and in the simplicial case it is

hocolim
A

X =

∫ a

N(a ↓ A)×X(a)

In the topological case we use the classifying space instead of the nerve. This
gives us a way to use the techniques of coends to manipulate homotopy colimits.

This characterisation of the homotopy colimit can be related to the ordinary
colimit in the context of model categories; to be precise it gives a clearer way to
show that the homotopy colimit is the derived functor of the colimit. A proof of
this fact can be found in [Gam10]; another overview of the theory surrounding
this fact can be found in [Shu06].

The following is the justification for constructing the homotopy colimit, as
described in the beginning of this section:

Proposition 3.19. Let X,Y : A → S be diagrams and η : X ⇒ Y a natural
transformation which is a levelwise weak equivalence. Then the induced map
XhA → YhA is a weak equivalence.

We will not give a proof of this statement here. A proof can be found in
proposition 4.7 of [Dug], but the statement there requires that the diagrams
are objectwise cofibrant. This turns out to not matter in our context: it is
proven as theorem A.7 of [DI04] that the cofibrancy condition can be dropped
for topological spaces. The standard model structure on simplicial sets has the
property that all objects are cofibrant, so for our case we do not need to worry
about objects being cofibrant.

We will now exhibit the homotopy colimit as the classifying space or nerve
of a category. This category turns out to have some additional structure.

Definition 3.20. A topological category is a small category C with a topol-
ogy on its set of objects and on the set of all morphisms in C, denoted Mor(C),
such that the composition operation is continuous. Additionally the two maps
Mor(C)→ Obj(C) for the domain and codomain should be continuous. A func-
tor of topological categories is a functor which is continuous on objects and
morphism sets. The category of topological categories is denoted catS .

A simplicial category is analogously a small category with the structure
of a simplicial set on objects and morphisms, and the same functors as a above
should be morphisms of simplicial sets.

The category of topological categories or simplicial categories is denoted
catS .

Lemma 3.21. The nerve of a topological category C can be given the structure
of a simplicial space. The nerve of a simplicial category D has the structure of
a bisimplicial set.
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Proof. The 0-chains in NC have the topology of the objects of C, the 1-chains
have the topology of the morphism sets, and the n-chains have the subspace
topology on the n-fold product of the morphism sets. The surface and degen-
eracy maps are all either compositions or giving the (co)domain, and these we
have assumed to be continuous.

The simplicial case is completely analogous.

This construction is a slight generalisation of the classical nerve and classi-
fying space we have seen before; when we take the topology/simplicial structure
to be discrete, we get the usual classifying space and nerve. All properties of
the classical construction that we are interested in can also be proven for this
construction, so we will tacitly assume these.

Proposition 3.22. Let A be a small category and X : A → S a diagram. Then
there is a topological category denoted A(X) such that

hocolim
A

(X) = |NA(X)|

Note that we see NA(X) as a simplicial space and that | − | thus means realiza-
tion of a simplicial space. This proposition also holds in the context of simplicial
sets, where we instead get d(NA(X)).

Proof. The objects of A(X) are the disjoint union of the X(a), a ∈ A. We will
denote an element of this set by (a, x), where a ∈ A is the index in the disjoint
union and x ∈ X(a). A morphism (a, x) → (a′, x′) consists of a morphism
f : a→ a′ in A such that X(f)(x) = y.

The topology on objects is given by the coproduct topology, and in the
simplicial case it is also given by the levelwise coproduct. The morphism sets
are given the subspace topology as a subspace A(X)((a, x), (a′, x′)) ⊂ A(a, a′)×
X(a). Note that this topology is not considered when taking the classifying
space

It suffices to show that NA(X) = srep(X) in the topological setting. An

element of NA(X) is of the form (a0, x0)← ...
f←− (an, xn) where f : an → an−1.

There is redundant data in this; we know that xn−1 = X(f)(xn), so we can
construct an isomorphism sending this to (a1 ← ...← an, xn). The latter is an
element of srep(X). In the setting where S = sSet similar argument applies; an
element of NA(X) of bidegree n,m is then again a chain in A of length n with
an element of X(a0)m; taking n = m gives the homotopy colimit.

Remark: the notation X(A) would be more fitting; after all one applies X
to all elements of A. We will, however, follow the literature with the notation
as above.

If we take the homotopy colimit forming the classical classifying space, so
that X(a) = ∗ constantly, we see that A(X) is a disjoint union of of A objects,

with morphisms (a, ∗) → (b, ∗) for morphisms a
f−→ b with X(f)(∗) = ∗ which

is of course true as all morphisms are mapped to the identity. This means that
A(X) is just A, and we recover hocolimAX = BA as expected.
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3.4 Algebra structure on homotopy colimits

We now relate the notion of commutativity of I-spaces, which is weaker than
being levelwise commutative, to the notion of an E∞-space, which in turn is
weaker than being commutative.

Theorem 3.23. Let X be a commutative I-space monoid. Then Xh I is an
algebra of the Barratt-Eccles operad.

This theorem is a consequence of the more general proposition below, which
can be found as proposition 6.5 in [Sch09].

Proposition 3.24. Let O be any operad, and let E denote the Barratt-Eccles
operad. The functor hocolimI induces a functor SI [O]→ S[O × E ].

Proof. Let X be an I-space with an action of O. We can identify hocolimI X
with B I(X). We need to define a map θ : O(k)× Σ̃k×I(X)k → I(X). We can
then apply the classifying space functor or nerve functor, which are monoidal,
to get the required action. View O(k) in this setting as a topological category,
with objects the set O(k) and only identity morphisms. The topology is given
by the topology on O(k); it is thus a discrete category, but not necessarily a
discrete topological space. Let θ denote its action on X. We define

θ(c, σ, (n1, x1), ..., (nk, xk)) = (nσ−1(1)t...tnσ−1(k), σ(n1, ..., nk)∗θ(c, x1, ..., xk))

To make this a functor and thus a proper action, we also need to define
what needs to happen with morphisms. The category O(k) only has identity
morphisms which we will ignore. The morphisms of Σ̃k are of the form τσ−1 :
σ → τ . Let αi : ni → mi be morphism in I(X). We then define, writing α for
the sequence,

θ(τσ−1, α) = τσ−1(mσ−1(1), ...,mσ−1(k))∗(ασ−1(1) t ... t ασ−1(k))

We can then write out, writing y1 = X(αi)(x1):

θ(τσ−1, α)(θ(c, σ, (n1, x1), ..., (nk, xk)))

= θ(τσ−1, α)((nσ−1(1) t ... t nσ−1(k), σ(n1, ..., nk)∗θ(c, x1, ..., xk))

= τσ−1(mσ−1(1), ...,mσ−1(k))∗((mσ−1(1) t ... tmσ−1(k), σ(m1, ...,mk)∗θ(c, y1, ..., yk))

= (mτ−1(1) t ... tmτ−1(k), τ(m1, ...,mk)∗θ(c, y1, ..., yk))

= θ(c, τ, (m1, y1), ..., (mk, yk))

= θ((idO(k) × τσ−1 × α)(c, σ, (n1, x1), ..., (nk, xk))

where we used that σ−1(τσ−1)−1) = τ−1, and that θ commutes with actions
on the terms it applies to. Applying the classifying space functor completes the
proof.
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The theorem follows by taking O to be the commutative operad; I-spaces
with a commutative operad action are commutative I-spaces, and the commu-
tative operad action in this case is just the map

θ : X(n1)× ...×X(nk)→ X(n1 t ... t nk)

which we get from the fact that X is commutative; note that the fact that X
is commutative guarantees that we do not need to worry about whether this
is associative. We will denote this map by (x1, .., xk) 7→ µ(x1, ..., xk). The
Barratt-Eccles action on the level of categories now becomes

θ(σ, (n1, x1), ..., (nk, xk)) = (nσ−1(1) t ... t nσ−1(k), µ(xσ−1(1), ..., xσ−1(k)))

4 A commutative I-space model of permutative
categories

In this section we will study the relationship between permutative categories
and commutative I-spaces. More precisely, we will look at a commutative I-
space related to a permutative category such that the homotopy colimit of this
I-space is the nerve/classifying space of the permutative category. We will then
discuss how the E∞-structures we get from the nerve/classifying space on the
one hand and the homotopy colimit of a commutative I-space on the other are
related. We first start with some seemingly unrelated general facts which will
later all come together when we have defined the commutative I-space we are
after.

4.1 I-categories and cofinal functors

We know what I-spaces are for topological spaces and simplicial sets; we sim-
ilarly define a I-category to be a functor I → cat where cat denotes the
category of small categories. A monoid in this category is again an I-category
X with maps X(n) × X(m) → X(n t m) and unit 1 → X(0) where 1 is
the terminal category. These maps must satisfy the associativity and unitality
relations which we have studied before.

Lemma 4.1. Let X be an I-category. Then N ◦ X and B ◦ X are I-spaces,
and the same holds for (commutative) monoids in the respective categories.

Proof. The functors N and | − | are lax monoidal, so for instance we get a map

N(X(n))×N(X(m))→ N(X(n)×X(m))
N(µ)−−−→ N(X(n tm)).

Next we will define homotopy cofinal functors; these are functors that induce
weak equivalences on homotopy colimits.
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Definition 4.2. A functor F : A → B is homotopy cofinal if for every C ∈ B,
the space B(C ↓ F ) is contractible.

We denote by I+ the full subcategory of I consisting of the elements corre-
sponding to the elements ≥ 1. We denote the inclusion map by i.

Proposition 4.3. The functor i : I+ → I is homotopy cofinal.

Proof. We need to prove that B(n ↓ i) is contractible for all n ∈ I, or equiv-
alently for n ≥ 1 that B(n ↓ I+) is contractible. The category n ↓ I+ has an
initial object idn because for any f : n → m we have the unique morphism in
n ↓ I+ given by the diagram

n

n m
id

f

f

Categories with an initial object have contractible classifying space so we are
done. This does not work for the category 0 ↓ i as 0 is not in I+ and there is
no morphism 0→ 0. However, it is easily seen that 0 ↓ i is equivalent to I+ as
0 has only unique morphisms to elements in the image of i (which is equivalent
to I+). It thus suffices to show that I+ is contractible. We do this in the next
lemma, which is kept separate as the contractibility of I+ is used explicitly later
on.

Lemma 4.4. The category I+ is contractible

Proof. We know that I is contractible as it has the initial object 0. We will
look at the inclusion map i : I+ → I. The second map is j : I → I+,n 7→ 1tn
which, when a : 0→ 1 is the unique map, is given by at idn. Both compositions
are related to the identity by a natural transformation induced by j. For one
half we get η : idI+ ⇒ i ◦ j given by concatenation with id1. Naturality is given
by the square

n 1 t n

m 1 tm

i◦j

f id1tf
i◦j

We can similarly give a natural transformation η : idI ⇒ j ◦ i. Since natural
transformations induce homotopies this means that B I is homotopy equivalent
to B I+.

The proof above works for the category n ↓ I+, which is not to be confused
with the full subcategory of I consisting of those m where m ≥ n. Those
categories do not have an initial object as there are too many morphisms out of
each object. The category n ↓ I+ consists of the same objects but paired with
morphisms out of n where we can form this initial object. Note that the choice
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of the identity in the proof could also have been replaced by any automorphism
n→ n as all these are isomorphic in n ↓ I+.

This fact can be found as corollary 5.9 of [SS12] in a slightly more general
context. The proof there is more involved because it also holds for a different
category J where the proof we have given does not apply.

Proposition 4.5. Let F : A → B be homotopy cofinal, and X : A → S. Then
hocolimAX and hocolimBX ◦ F are weakly equivalent.

This will turn out to be a consequence of Corollary 4.19, once we have
developed some more tools.

4.2 A lemma of Quillen

Now we will work up to a lemma of Quillen which will prove very useful, in that
it allows us to compare a homotopy colimit over a functor with one of the images
of the functor. We need another definition before we can state the lemma:

Definition 4.6. Suppose we have a commutative diagram of spaces

A B

C D

f

g

Then the diagram is homotopy cartesian or a homotopy pullback if for

any factorisation f = B
i−→ E

p−→ D where i is an acyclic cofibration and p a
fibration, we have that the map A→ C ×D E is a weak equivalence.

It turns out that this definition can be loosened a bit; any factorization of
f will suffice to show the definition holds, and it is also sufficient to show the
property using a factorization of g.

Homotopy pullbacks are quite useful in our context, as the normal fact that
pullbacks of isomorphisms are isomorphisms translate into our setting now:

Lemma 4.7. If

A B

C D

g

g

is homotopy cartesian and g is a weak equivalence then g is a weak equivalence.

For the proof it should be noted that this definition of a homotopy cartesian
square is also applicable to a larger class of model categories; the necessary
property which both Top and sSet enjoy is that they are right proper. This
means that pullbacks along a fibration preserve weak equivalences (the notion of
left proper means that pushouts along cofibrations preserve weak equivalences).
We need this property for the proof of the lemma:
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Proof. Let the square be as in the lemma, and f = B
i−→ E

p−→ D be the
factorization as in the definition. We can draw the following diagram:

A B

C ×D E E

C D

g

∼

f

∼
a

p

g

We can then say the arrow a is a weak equivalence, as it is a pullback along
the fibration p of the weak equivalence g. It then follows that the g is a weak
equivalence by the two-out-of-three property.

It is clear from the definition that it is not sensible to speak of ”the” homo-
topy pullback of a span; it is only unique up to weak equivalence.

The following is a step in the proof of Quillen’s theorem B, and appears in
[Qui73]. The version we are interested in can be found in [GJ09] IV.5.2, where
one can also find its proof. The proof given there relies on Quillen’s small object
argument, which is not in the scope of this text. We will therefore not discuss
a proof of this fact.

Theorem 4.8. Let X : A → sSet be an A-space such that for all f : a→ b ∈ A
we have that X(f) : X(a)→ X(b) is a weak equivalence, then the following is a
homotopy pullback square for all a ∈ A:

X(a) hocolimX

∗ NAja

Here ∗ is the one-point space, explicitly given by [n] 7→ {∗}. The map ja sends
the point in ∗([n]) to the n-chain formed by the n-fold composition of ida. The
right vertical map is the map induced by the maps X(i)→ ∗.

The theorem above also holds in the context of topological spaces. This
follows because Quillen equivalences preserve homotopy cartesian squares; the
details of this are not in the scope of this text.

4.3 Another way of getting E∞-structures

In what follows, let (K,⊗, e) be a permutative small category. We have already
seen that BK naturally has an E∞-structure. We have also seen that homotopy
colimits of commutative I-spaces have E∞-structures. What we will construct

42



is a commutative I-space associated to K whose homotopy colimit is related by
a zig-zag of weak equivalences to BK, and we will prove that these maps are
morphisms of E∞-spaces.

Definition 4.9. The rectification along I is a functor denoted ΦI(K) : I →
cat. The image of an object n is defined by Obj(ΦI(K)(n)) = Obj(Kn) the
n-fold cartesian product, with

ΦI(K)(n)((k1, ..., kn), (l1, ..., ln)) = K(k1 ⊗ ...⊗ kn, l1 ⊗ ...⊗ ln)

We take K0 to be the category with one element ∗. The image of a morphism
α : n→m is a functor α∗ : ΦI(K)(n)→ ΦI(K)(m) given on objects by

α∗(k1, ..., kn) = (kα−1(1), ..., kα−1(m))

where we put e on indices which are not in the image of α. The image of
a morphism f : (k1, ..., kn) → (l1, ..., ln) is defined as the unique morphism
kα−1(1)⊗...⊗kα−1(n) → lα−1(1)⊗...⊗lα−1(n) which is induced by the isomorphism
kα−1(1) ⊗ ... ⊗ kα−1(n) → k1 ⊗ ... ⊗ kn and the analogous version for (l1, ..., ln);
this isomorphism exists because K is permutative.

More details on this construction can be found in [SS16] and [Sch18].
An immediate observation is that ΦIK(1) = K. We will denote NΦIK(n) =

NIK(n), and also BΦIK(n) = BIK(n)

Proposition 4.10. The I-spaces BIK and NIK have a commutative I-space
monoid structure induced by the the permutative structure of K.

Proof. It is easiest to prove that the ΦIK form a commutative I-category
monoid; Lemma 4.1 then gives the rest. For µ : ΦIK(n)×ΦIK(m)→ ΦIK(nt
m) we define on objects µ((k1, ..., kn), (l1, ..., lm)) = (k1, ..., kn, l1, ..., lm) and on
morphisms µ(f, g) = f ⊗ g. The element in ΦIK(0) = {∗} acts as a unit, as we
define µ(∗, x) = µ(x, ∗) = x. For this to be a commutative I-category we need
the following diagram from section 3.1 to commute:

ΦIK(n) t ΦIK(m) ΦIK(n tm)

ΦIK(m) t ΦIK(n) ΦIK(m t n)

µ

swap ΦIK(χn,m)

µ

The map χ : ntm→mtn is the block swap. We do have this structure, as ac-
cording to the definition the swapping action is given by (χn,m)∗(k1, ..., kn, l1, ..., lm) =
(l1, ..., lm, k1, ..., kn) which commutes with the swapping of the input on the
right.

Proposition 4.11. For all n,m ∈ I with n,m > 0 and K a permutative
category, we have that BIK(n) and BIK(m) are weakly equivalent.
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Proof. By the above it suffices to give an equivalence of categories on the under-
lying categories. For this we also look at the map j : 1→ n, j(1) = 1, inducing
a map K = ΦIK(1) → ΦIK(n). This is part of an equivalence of categories;
we take the map m : (k1, ..., kn) 7→ k1 ⊗ ...⊗ kn. For the composite m ◦ j of an
element k, note that j(k) is just the sequence (k, e, ..., e) with only k at index
1, and the image under m of this is just k, so m ◦ j is the identity on K. For
j ◦m, note that (j ◦m)(k1, ..., kn) = (k1 ⊗ ... ⊗ kn, e, ..., e), which is naturally
isomorphic to (k1, ..., kn).

We can make this statement somewhat more specific:

Corollary 4.12. For all morphisms f : n→m in I+, we have that the induced
map f∗ : BIK(n)→ BIK(m) is a weak equivalence

Proof. Define jk : 1 → n, j(1) = k for 1 ≤ k ≤ n. Note that the choice of
using j1 in the proof of the proposition above is more of a convenience than a
necessity; the proof will work with any jk. Note that f ◦ jk = jf(k), so we also
get that f∗ ◦ (jk)∗ = (jf(k))∗. Both (jk)∗ and (jf(k))∗ are weak equivalences by
the above proposition, so by the two-out-of-three property of weak equivalences
we get that f∗ is a weak equivalence.

All the work we have done in the last two sections culminates in the follow-
ing statement. It can be found in a slightly different context in the proof of
Proposition 4.18 of [SS16].

Theorem 4.13. We have a weak equivalence NK → hocolimI NIK or BK →
hocolimI BIK induced by the inclusion {1} → I.

Proof. By the fact that I+ ⊂ I is homotopy cofinal, we only have to prove
that there is a weak equivalence BK → hocolimI+ NIK. This follows from the
fact that I+ is contractible as proven in Lemma 4.4, so ∗ → N I+ is a weak
equivalence. As f : i → j ∈ I+ induce a weak equivalence BIK(i) → BIK(j),
the conditions of Theorem 4.8 above holds and by Lemma 4.7 it is a weak
equivalence.

4.4 The theorem of Hollender-Vogt

Definition 4.14. Let S be the category of spaces or simplicial sets as before.
Let C be a small category, X : Cop → S, Y : C → S. We the define the total
bar construction of X and Y along C to be the bisimplicial set or simplicial
space

[n] 7→
∐

c0→...→cn

X(c0)× Y (cn)

The bar construction for simplicial sets is the diagonal of this, and the version
for topological spaces takes the geometric realization. Both versions will be
denoted B(X, C, Y ).
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Similar to the case for the tensor operation we can take X : D×Cop → S, Y :
C × E → S and get B(X, C, Y ) : D × E → S. This also signifies why we choose
to explicitly denote the category along which the bar construction is taken.

One detail we skipped over are the face and degeneracy maps. They work
similarly to those in the homotopy colimit: we shorten or extend the chain of
morphisms in the middle. Specifically, the face maps insert an identity, while
the degeneracy maps compose adjacent morphisms. The only exceptions to this
rule are the edge cases. We work in B(Y, C, X), with fn ◦ ... ◦ f1 : cn → ...→ c0,
y ∈ Y (cn), x ∈ X(c0):

d0(fn ◦ ... ◦ f1, y, x) = (fn ◦ ... ◦ f2, y,X(f1)(x))

dn(fn ◦ ... ◦ f1, y, x) = (fn−1 ◦ ... ◦ f1, Y (fn)(y), x)

At this point it becomes clear why we demand Y to be contravariant; to get an
element of Y (cn−1) we need to move y in the reverse direction of the arrow fn,
which can be done if Y is contravariant.

The bar construction will form a more general tool than both the tensor
product defined above and the homotopy colimits we study. At a first glance it
is already clear that B(∗, C, ∗) = NC, and it is also easy to see that B(∗, C, X) =
hocolimC X. This means that if we study properties of the bar construction we
can sometimes translate these to properties of homotopy colimits.

A more accurate relation between the bar construction and the tensor op-
eration is that the bar construction is the derived tensor operation. This
matches the relation to the colimit; recall that ∗ ⊗C X = colimC X, and that
B(∗, C, X) = hocolimC X. Details on this relationship can be seen in for example
Section 21 of [Shu06].

The following are some of the properties of the bar construction. The main
resource for this section is [HV92] as this leads to the result we want, but
the reader should beware that this article does suppress some notation such as
C(−, F (−)) being denoted by C. Another useful resource is [Shu06], which does
however not go exactly in the direction we need.

We will silently assume that C is topologically enriched or a topological
category. This means that C(a, b) can be assumed to be a topological space. We
will not delve too deeply into this structure for now.

Lemma 4.15. We have the following natural homotopy equivalences, where
X : Cop → S, Y, Z : C → S. These also work when we take X : Cop × D → S
and similar for Y, Z to get natural isomorphims instead of isomorphism

1. B(X, C, Y )⊗ Z ∼= B(X, C, Y ⊗ Z)

2. B(B(X, C, Y ′),D, Z) ∼= B(X, C, B(Y ′,D, Z)) where Y ′ : Cop ×D → S and
Z : D → S

3. There is a natural homotopy equivalence B(C, C, Y ) ' Y ; this is the ana-
logue of the co-Yoneda lemma.
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4. B(X, C, Y ) ∼= B(Y op, Cop, Xop), where Y op : Cop → S with Y op(c) =
c, Y op(fop : d→ c) = Y (f : c→ d).

Proof. 1. B(X, C, Y )⊗Z =
∐
a

∐
c0→...→cn X(cn)×Y (a, c0)×Z(a)/ ∼. The

equivalence relation does not act on the term X(cn), so we can leave
this out of the relation. It is also unaffected by a, so using the distribu-
tive law for products and coproducts this reduces to

∐
c0→...→cn X(cn)×

(
∐
a Y (a, c0)× Z(a)/ ∼) = B(X, C, Y ⊗ Z)

2. We write
∐
c for

∐
c0→...→cn for brevity:

B(B(X, C, Y ′), E , Z ′)

=
∐
d

(
∐
c

X(cn)× Y ′(c0,−)(dn)× Z(d0)

=
∐
d,c

X(cn)× Y ′(c0, dn)× Z(d0)

=
∐
c

X(cn)× (
∐
d

Y ′(−, dn)× Z(d0))(c0)

= B(X, C, B(Y ′,D, Z))

3. The map we will use is the map φ : (g, f1 ◦ ...◦fn, x) 7→ X(g ◦f1 ◦ ...fn)(x).
Let r : X → B(C, C, X) be the map x 7→ (id, id ◦ ... ◦ id, x). We construct
an explicit simplicial homotopy H between the identity and r ◦ φ. We
define this by

Hm(n, (g, f1 ◦ ...◦fm, x)) = (g, id◦ ...f1 ◦ ...◦fm−n, X(fm−n+1 ◦ ...◦fm)(x))

with at n = 0 doing nothing, and at n = m + 1 we apply g as well to
arrive at the image of r ◦ φ. One can check that this defines a simplicial
homotopy.

For naturality of φ, let h be a suitable morphism in C. Then we can write

(φ ◦ h∗)(g, f1 ◦ ... ◦ fn, x) = φ(h ◦ g, f1 ◦ ... ◦ fn, x) = X(h)φ(g, f1, ..., fn, x)

which proves that φ is natural.

4.

B(Y op, Cop, Xop)

=
∐

c0←...←cn

Xop(c0)× Y op(cn)

=
∐

c0←...←cn

X(c0)× Y (cn)

= B(X, C, Y )
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Note that the fourth statement of this lemma allows us to exchange items in
the other three statements; for instance that B(X, C, C) ∼= X. Be aware that the
functors do change direction, so the example we gave technically follows from
B(Cop, Cop, Xop) ∼= Xop.

Recall that for d ∈ D we have the category d ↓ D of arrows out of d. If
F : C → D is a functor we define D ↓ F to be the category with objects (f, c)
with f : d→ F (c) and the natural maps.

Lemma 4.16. We have a homotopy equivalence B(∗, C,D(−, F (−))) ' N(D ↓
F )

Proof. Morphisms in D ↓ F from (C0, f0) to (C1, f1) are given by a morphism
g : C0 → C1 such that F (g) ◦ f0 = f1. Therefore, given (C0, f0) ∈ D ↓ F and
g : C0 → C1 we can uniquely make from this a (C1, f1) ∈ D ↓ F with g inducing
a morphism (C0, f0) → (C1, f1): we take f1 = F (g) ◦ f0, which satisfies what
we want by definition. We pick an element

(f1 ◦ ... ◦ fn : C0 → Cn, α : D → F (C0)) ∈ B(∗, C,D(D,F (−))

We associate to this the chain

(C0, α)→ (C1, F (f1) ◦ α)→ (C2, F (f2 ◦ f1) ◦ α)→ ...

by the process described above; this exactly gives an element of the nerve of
D ↓ F . Naturality is quite straightforward, and we do not write it out.

Corollary 4.17. We get a weak equivalence hocolimC X ' B(C ↓ id)⊗X

Proof.

hocolimX = B(∗, C, X) '
B(∗, C, C ⊗X) ∼=

B(∗, C, C(−, id(−)))⊗X '
B(C ↓ id)⊗X

Here we used the co-Yoneda lemma Lemma 3.9 and the interplay between the
bar construction and the tensor product from Lemma 4.15, combined with the
previous lemma.

The formula as in the above corollary is how Bousfield and Kan originally de-
fined the homotopy colimit. We can offer yet another formula for the homotopy
colimit:

hocolim
C

X = B(∗, C, X) = B(∗ ⊗ C, C, X) = ∗ ⊗B(C, C, X) = colimB(C, C, X)

This version, which is taken from [HV92], exhibits the homotopy colimit as
a colimit of a certain resolution of X, and can in practice give computable
formulas for homotopy colimits. We call B(C, C, X) the bar resolution of X.
The following lemma gives another description of this resolution, which is used
in [SS16].
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Lemma 4.18. Let π denote the natural transformation C ↓ id → constC , c →
d 7→ c. We view B(∗, C ↓ id, X ◦ π) as a functor C → S using the functor
to small categories in the middle position; the natural transformation π makes
that we can functorially use the bar construction. We have a weak equivalence
B(∗, C ↓ id, X ◦ π)→ B(C, C, X).

Proof. The proof is similar to the above; a chain in (C ↓ id)(C) consists of a chain
in C of objects with morphisms to C, which all commute. This is equivalent to
giving a chain in C with a morphism from the end of the chain to C. The functor
X is only applied to the first object of the chain and not to the morphism of
the first object, so the total data we have is: a chain c0 → .. → cn in C, an
element of C(cn, C), and an element of X(c0). This is just the same as giving
an element of B(C, C, X)

Corollary 4.19. We get the following properties of homotopy colimits:

• hocolimC B(X,D, Y ) ' B(hocolimC X,D, Y ), where X : C × Dop → S

• The cofinality theorem, i.e. if B(D ↓ F ) is contractible for all D ∈ D,
then we have a weak equivalence XhD ' (X ◦ F )hC.

Proof. The first statement follows from substituting the bar-version of the ho-
motopy colimit. For the cofinality theorem, note that by assumption

∗ ∼= B(D ↓ F ) = B(∗, C,D(−, F (−))

We can then compute

XhD = B(∗,D, X)

' B(B(D ↓ F ),D, X)

' B(B(∗, C,D(−, F (−)),D, X)
∼= B(∗, C, B(D(−, F (−)),D, X))

= B(∗, C, B(D,D, F ) ◦ F )

' B(∗, C, B(∗,D, X ◦ F ))

= (X ◦ F )hC

Definition 4.20. Let X : C → S, F : C → D. We define the homotopy left
Kan extension of X along F by B(D(F (−),−), C, X), and denote it by Fh∗X

From this point on we will call these homotopy Kan extensions; homotopy
right Kan extensions exist, but we will not need them in this text.

In the case of ordinary (left) Kan extensions we have that LanF ◦LanGX =
LanF◦GX, which can be seen by the fact that LanF is left adjoint to precompo-
sition with F . Additionally, if F is a functor C → ∗ then LanFX ∼= colimC X;
combining these facts gives the formula colim(LanGX) = colimX. The homo-
topy version of this statement is the following:
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Proposition 4.21. There is a natural weak equivalence

hocolim
D

Fh∗X ' hocolim
C

X

Proof. We can write out

hocolim
D

Fh∗X

= B(∗,D, B(D(F (−),−), C, X)
∼= B(B(∗,D,D(F (−),−)), C, X)

We have that B(∗,D,D(F (−),−)) as a functor C → S is the composition
B(∗,D,D) ◦ F , but we have that B(∗,D,D) ' ∗, so we also get a natural
weak equivalence

B(∗,D,D(F (−),−)) ' ∗

This proves the proposition.

One should be aware of the difference between the proof above and the
situation as in Lemma 4.16; there we were looking at D(−, F (−)) and here we
looked at D(F (−),−). This difference is vital to this argument, as in this case
F was not applied to an element of the chain inside the bar construction, but
to the argument for the bar construction as a whole.

4.5 The Grothendieck construction and Thomason’s the-
orem

For the next step in our construction, we will refine our Proposition 3.22 some
more. We will be looking specifically at homotopy colimits of the form (NF )hC ,
where F is a C-diagram of categories. We want to get a construction on such
a diagram such that the nerve of this construction is the homotopy colimit we
are interested in. In other words we could say that we want something which
behaves like the homotopy colimit within the category of small categories. If we
denote this by C∫F (where F is a C-diagram), we want a weak equivalence:

N(C∫F ) ' (NF )hC

Let us look at the right side of this equation, and give an element of this,

say of degree m. This is a chain c0
j1−→ c1 → ...

jn−→ cn in C, and a chain

k0
f1−→ k1 → ...

fn−→ kn in F (c0). Note that in the homotopy colimit these chains
have equal length, as the homotopy colimit of simplicial sets is defined as the
diagonal of a bisimplicial set. We want to exhibit this data as the diagonal row
of a big ’diagram’, which we could draw like the following (writing (−)∗ for for
the action of F ).
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k0 j∗1k0 ... (jn ◦ ... ◦ j1)∗k0

k1 j∗1k1 ...

... ... ... ...

km ... (jn ◦ ... ◦ j1)∗km

Not that this is strictly not a diagram of arrows in a category, as there are
no arrows from k0 to j∗1k0; one is in F (c0) and the other in F (c1), and these
are generally different categories. We remedy this by gluing all the categories
together.

Definition 4.22. Let C be a small category, and F : C → cat. We define
the Grothendieck construction of this data to be the category with objects
(C,X) where C ∈ C, X ∈ F (C). Morphisms (C,X)→ (D,Y ) are given by pairs
(f : C → D, g : F (f)(X) → Y ). Composition is given by (f, g) ◦ (f ′, g′) =
(f ◦ f ′, g ◦ F (f)(g′)). We denote this category by C∫F .

A definition of the Grothendieck construction and related concepts can be
found in chapter V of [Ric20]. The definition can also be found in [HV92] and
[Tho79] for the purpose that we will use it for.

Remark 4.23. The integral notation in the Grothendieck construction is very
reminiscent of a (co)end; indeed we have

C∫F =

∫ c∈C
(c ↓ C)× F (c)

The Grothendieck construction solves the problem we had before where
some of the arrows in the diagram did not represent any arrows in a cate-
gory. Now we have an arrow (c0, k0)→ (c1, j

∗
1k0) given by (j1, id). Also, in the

big diagram above all the square commute when one fills in all the appropriate
maps. If we take for example to top left square, we have (id, j∗1 (f1)) ◦ (j1, id) =
(j1, id) ◦ (id, f1) = (j1, f1) by using the definition of composition in this cate-
gory. Therefore we get a well-defined chain on the diagonal, which is a chain in
N(C∫F ) as desired. We denote the map which performs this procedure by η.
Writing out fully, we define

η(c0
j1−→ c1 → ...

jn−→ cn, k0
f1−→ k1 → ...

fn−→ kn) =

(c0, k0)
(j1,f1)−−−−→ (c1, j

∗
1 (k1))→ ...

(jn,(jn−1◦...◦j1)∗(fn))−−−−−−−−−−−−−−−→ (cn, (jn ◦ ... ◦ j1)∗(kn)

The use of this construction is in the fact that η is a weak equivalence. This
result was first achieved in [Tho79], where the Grothendieck construction is
exhibited as a formulation of the homotopy colimit in the category of small
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categories. The proof by Thomason gives a functor F̃ and maps

hocolimNF̃

hocolimNF N(C∫F )

λ1

λ2

η

Thomason proves that λ1, λ2 are weak equivalences and that there is a ho-
motopy η ◦ λ1 ⇒ λ2, by which η is a weak equivalence. We will, however, give
a proof formulated in [HV92] by Hollender and Vogt which relies heavily on
the machinery of the bar construction. We will later show that this proof does
not differ too much from the proof by Thomason by exhibiting that the middle
spaces in both proofs use are equivalent.

Theorem 4.24. Let F : C → cat be a functor. Let P : C∫F → C, (K,C) 7→ K
and ∗ : C∫F → S be the constant one-point space. There are weak equivalences

hocolim
C

N ◦ F ← hocolim
C

Ph∗∗ → N(C∫F )

Remark: It might seem plausible that we can get an equivalence between the
left and right terms using basic manipulations of coends, as both the homotopy
colimits and Grothendieck constructions can be written in this way. If we write
the nerve as N(−) = cat(∆op,−) we can write this theorem as∫ c

cat(∆op, c ↓ C × F (c)) ∼= cat(∆op,

∫ c

c ↓ C × F (c))

where we have already used that the homomorphism-functor preserves limits
in the second argument. It does in general not preserve colimits in the second
argument, so there is no simple coend-manipulating proof of this theorem.

Proof. For the right map, we compute:

hocolim
C

Ph∗∗

= B(∗, C, B(C(P (−),−), C∫F, ∗))
∼= B(B(∗, C, C(P (−),−)), C∫F, ∗)

= B(B(∗, C, C) ◦ P, C∫F, ∗)
' B(∗ ◦ P, C∫F, ∗)

= N(C∫F )

For the left map, pick K ∈ C. We make the diagram:

F (K) C∫F

∗ C

J

∗ P

idK
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Here J is the inclusion map C 7→ (K,C). We first finish up the proof using
another calculation before finishing up the final details.

claim:C(P (−),K) ' B(∗, F (K), C∫F (−, J(−)))

This allows us to complete the proof. We compute:

(Ph∗∗)(K)

= B(C(P (−),K), C∫F, ∗)
' B(B(∗, F (K), C∫F (−, J(−))), C∫F, ∗)
∼= B(∗, F (K), B(C∫F (−, J(−)), C∫F, ∗))

' B(∗, F (K), ∗ ◦ J)

= N(F (K))

Proof of claim: Let us look at an element of the right hand side (in
degree n) applied to (K ′, c) ∈ C∫F : it consists of a chain F (c0) → .. → F (cn)
in F (K), and an element f ∈ C∫F ((K ′, c), (K, c0)), which corresponds to a
morphisms f : K ′ → K and a morphism F (f)(c) → c0. The whole space
can therefore be written as a combination of C(K ′,K) and spaces of the form
B(∗, F (K), F (K)(D,−); to be exact we take the pullback of C(K ′,K) and the
coproduct over all D ∈ Obj(F (K)) of B(∗, F (K), F (K)(D,−)). We take the
pullback along the set Obj(F (K)), where for the left hand side we take the map
f 7→ F (f)(c), and for the right hand side we take B(∗, F (K), F (K)(D,−)) 7→ D.
We thus get a pullback diagram

B(∗, F (K), C∫F (−, J(−))) B(∗, F (K), F (K)(D,−))

C(K ′,K) Obj(F (K))

The map on the right hand side is a homotopy equivalence (as each component
is), and since pullbacks of homotopy equivalences are homotopy equivalences
the space we started with is weakly equivalent to C(K ′,K) = C(P (K ′, c),K) as
desired.

In the proof by Thomason in [Tho79], the middle space is given by hocolimC NF̃ ,
where F̃ (c) = P ↓ c with P as above. This makes no difference:

Proposition 4.25. The following two spaces are isomorphic:

hocolim
C

Ph∗∗ ∼= hocolim
C

NF̃

52



Proof. We write out what they are:

(hocolim
C

Ph∗∗)n

=
∐

c0→...→cn

B(C(P (−),−), C∫F, ∗)n

=
∐

c0→...→cn

∐
(d0,x0)→...→(dn,xn)

C(dn, c0)

On the other hand we get:

hocolim
C

NF̃

=
∐

c0→...→cn

N(P ↓ c0)n

=
∐

c0→...→cn

{(d0, x0)→ ...→ (dn, xn), dn → c0}

Here we used that a chain in P ↓ c0 only requires the last morphism to c0 as
data, as the others can be inferred by the necessary commuting triangles. The
two spaces we have given are obviously the same, which proves our claim.

This proposition gives us a very useful tool: we can use the proof given by
Hollender and Vogt while retaining the explicit map given by Thomason.

4.6 Maps of E∞-algebras

In this section we will study the results we have seen in the context of E∞-
algebras, as the spaces we studied in the previous section can in some cases be
E∞-spaces. The question we want to answer is whether the weak equivalences
we have shown actually preserve this structure.

Lemma 4.26. Let X be a commutative K-category monoid, with K a permu-
tative category. Then B(K∫X) has an E∞-space induced by the permutative
structure of K and the commutative monoid structure of X.

Proof. The Barratt-Eccles operad for categories is formed by the categories Σ̃n
with objects for the permutations and a morphism between every two permu-
tations. Denote (n, x) for an element of C∫X. Then we can define

θk(σ, (n1, x1), ..., (nk, xk)) = (nσ−1(1) t ... t nσ−1(k), µ(xσ−1(1), ..., xσ−1(k)))

Here we used the map µ : X(n) × X(m) → X(n t m) which we get from
X being a commutative monoid. Since this operation is associative we are
allowed to apply µ to multiple entries without denoting how to parenthesise.
The equivariance of this expression is guaranteed by the commutativity of X; if
we permute the factors on the left side by τ , then the result is the same when
we act by τ on the right hand side.

A similar formula can be applied to morphisms, giving us the structure we
require.
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An immediate consequence is that N(I∫ΦIK) and B(I∫ΦIK) are E∞-spaces
in our setting.

Theorem 4.27. Let η be the map from Thomason’s theorem, where K is now
permutative and F a commutative K-category. Then η preserves the E∞-structure

Proof. This is relatively straightforward, but a rather expansive calculation. Let
µ denote the multiplication of X under the adjunction as discussed in Section
3.1. Since µ is strictly associative we can put any number of arguments in µ. We
use the shorthand tσj = jσ

−1(1)t...tjσ−1(m) and µσ(x) = µ(jσ
−1(1), ..., jσ

−1(m))
and σ = σ0 → ...→ σn. We compute

θm(σ, (η(ci0
ji1−→ ...

jin−→ cn, x
i
1

fi1−→ ...
fi1−→ xin)i=1..m))

= θm(σ, ((ci0, k
i
0)

(ji1,f
i
1)−−−−→ (ci1, (j

i
1)∗(xi1))→ ...

(jin,(j
i
n−1...j

i
1)∗(fin))

−−−−−−−−−−−−−→ (cin, (j
i
n...j

i
1)∗(xin))i=1..m)

= (tσc0, µσ(k0)
tσj1,µσf1−−−−−−−→ ...

(tσn−1 jn,µ
σn−1 (jn−1...j1)∗(fn))−−−−−−−−−−−−−−−−−−−−−−→ (tσncn, µσn(jin...j

i
1)∗(xin)))

On the other hand we get:

η(θm(σ, (ci0
ji1−→ ...

jin−→ cn, x
i
1

fi1−→ ...
fi1−→ xin)i=1..m))

= η((tσci0
tσji1−−−→ ...

tσjin−−−→ tσcn, µσxi1
µσfi1−−−→ ...

µσfi1−−−→ µσxin)))

= (tσc0, µσx0)
tσj1,µσf1−−−−−−−→ ...

(tσn jn,((tσn−1 jn)◦...◦(tσn−1 j1))∗(µσnfn))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (tσncn,
((tσn−1jn) ◦ ... ◦ (tσn−1j1))∗(µσnxn)

This would be equal if we could get the following square (where we forget
the variables above) to commute for all ni,mi, ji:

X(n1)×X(n2) X(m1)×X(m2)

X(n1 t n2) X(m1 tm2)

j∗1×j
∗
2

µ µ

(j1tj2)∗

This square commutes because µ is natural. Furthermore we need (j1 t j2) ◦
(j′1 t j′2) = j1 ◦ j2 t j′1 ◦ j′2 but this is guaranteed by the fact that t is a functor.

As an aside we check that the bar construction we defined earlier behaves
well, in the sense that it makes K-space monoids into E∞-algebras. It turns out
to not be necessary for our purposes, but it is nevertheless useful for showing
that the proof of Thomason’s theorem by Hollender and Vogt in [HV92] still
takes place in an E∞-context.
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Proposition 4.28. Let K be a permutative category (with product map t), X a
commutative K-space monoid and Y a commutative Kop-space monoid, we have
that B(Y,K, X) is an algebra over the Barratt-Eccles operad.

Proof. We check this at level n; suppose σ = σ0 → ...→ σn ∈ N(Σ̃m)n, and for
each i = 1...m we have bi = (ci0 → ...→ cin, y

i, xi) ∈ B(Y, C, X)n. Let us define:

θm(σ, b1, ..., bm)

= (θK(σ0, (ci0)ni=1)→ ...→ θ(σm, (cini)
n
i=1), µY (y1, ..., ym), µX(x1, ..., xm))

Again the commutativity of X and Y are necessary to make this an equivariant
map. The maps between the θC(σ

j , (cij)
m
i=1) for j and j+1 is given by the action

of θK on the unique morphism from σj to σj+1 and the morphisms between the
cji and cj+1

i .

We can compose the map from Thomason’s theorem with the following to
get the desired results. This is analogous to proposition 4.18 from [SS16].

Proposition 4.29. There is a weak equivalence between NK and N(I∫ΦIK)
which is a map of E∞-algebras.

Proof. Let us first mention the fact that any j ∈ I(n,m) can be factored as an
order-preserving map n → m after a permutation; let us call this permutation
j̃. Note that this is in this case gives a permutation on n elements; doing this
the other way around would not be well-defined. This construction however is
uniquely defined; if we claim to have a different permutation, two elements must
be reversed in order, resulting in a different result after the order-preserving
map which would be a contradiction. Let P : I∫ΦIK → K be the functor
(n, (k1, ..., kn)) 7→ k1 ⊗ ...⊗ kn, (j, f) 7→ f ◦ j̃∗. To prove that P is a functor we

take n
h−→m

j−→ p and

g : (k1, ..., km)→ (l1, ..., lm), f : (lj−1(1), ..., lj−1(p))→ (rj−1(1), ..., rj−1(p))

and look at the composition (j, f) ◦ (h, g). We have defined this to be (j ◦ h, f ◦
ΦIK(j)(g)). We can write the second component of this, together with the
diagram defining ΦIK(j)(g):

k1 ⊗ ...⊗ kn l1 ⊗ ...⊗ ln

kj−1(1) ⊗ ...⊗ kj−1(p) lj−1(1) ⊗ ...⊗ lj−1(p) rj−1(1) ⊗ ...⊗ rj−1(p)

g

j∗ j∗

ΦIK(j)(g) f

Notice that strictly speaking these are maps in the image of ΦIK, so should
have written the objects as tuples. We have written the underlying maps in K
in this case, and we will not make a notational distinction. Also note that in
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the bottom row we can write (kj−1(1) ⊗ ...⊗ kj−1(p)) as (kj̃−1(1) ⊗ ...⊗ kj̃−1(p))

and replace the map j∗ by j̃∗ because by definition we put the monoidal units
at indices which are not in the image of j and this corresponds to how we have
defined j̃. We can then write out the definition

P ((j, f) ◦ (g, h)) = P (j ◦ h, f ◦ φIK(j)(g)) = f ◦ φIK(j)(g) ◦ (j̃ ◦ h)∗

We have that j̃ ◦ h = j̃ ◦ h̃ by a simple write-out, and using the diagram with
the remark above we get:

f ◦ φIK(j)(g) ◦ ( ˜j ◦ h)∗ = f ◦ φIK(j)(g) ◦ j̃∗ ◦ h̃∗ = f ◦ f̃∗ ◦ g ◦ h̃∗

This is clearly the same as P (j, f) ◦ P (g, h) which makes P a functor.
We can now form the following chain of morphisms:

NIK(1)
i−→ NIKh I

η−→ N(I∫ΦIK)
NP−−→ NK

Here η denotes Thomason’s map from section 4.5, and i is the inclusion c 7→
(1→ ...→ 1, c). We have that η is a weak equivalence, and by Theorem 4.13 i
is a weak equivalence (as NIK(1) = NK). If we look at the composition of all
these maps we can write out:

NIK(1) 3 (k0
f1−→ ...

fn−→ kn)
i7−→

(1
id−→ ...→ 1, k0 → ...→ kn)

η7−→

(1, k0)
(id,f1)−−−−→ ...

(id,fn)−−−−→ (1, kn)
NP7−−→

(k0
f1−→ ...

fn−→ kn)

This means that this composition is the identity which is is a weak equivalence,
and two out of the three maps are weak equivalences. Therefore the third, being
NP , must be a weak equivalence.

It is noteworthy that it is not necessary to start with NIK(n) where n = 1;
if we had chosen any other n we would not have had the identity but rather the
map from Proposition 4.11 which we have proven is a weak equivalence.

Let us prove that P preserves the algebra structure:

P (θm(σ, (ni, (k
i
1, ..., k

i
ni))i=1...m))

= P (nσ−1(1) t ... t nσ−1(m), (k
σ−1(1)
1 , ..., kσ

−1(1)
nσ−1(1)

, k
σ−1(2)
1 , ..., kσ

−1(m)
nσ−1(m)

))

= (k
σ−1(1)
1 ⊗ ...⊗ kσ

−1(1)
nσ−1(1)

, k
σ−1(2)
1 ⊗ ...⊗ kσ

−1(m)
nσ−1(m)

)

= θm(σ, P ((ni, (k
i
1, ..., k

i
ni))i=1...m)

Here the last step can be taken because we can parenthesise all the blocks.

What we have shown thus far is the following:

Theorem 4.30. We have a chain of weak equivalence relating NK and (NIK)h I
which are morphisms of Barratt-Eccles algebras.
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5 Applications to commutative K-space monoids

In this section we will no longer look at just a permutative category K, but
broaden the scope to look at K-spaces and K-categories, i.e. K-diagrams of small
categories. The category ofK-spaces has a monoidal structure constructed in the
same way as in the category of I-spaces; after all we only used its permutative
structure and nothing specific about this category. The key difference is the
lack of understanding what the monoidal product does; in I-spaces we could
in examples like the matrix groups get some grasp of what this comes down
to, but now there is no a priori intuition. There are other interesting diagrams
of interest in the literature; two examples are [SS16], which deals with braided
injections, and [SS12], which deals with the category I and another category
named J .

In the rest of this section K will be a permutative category with monoidal
structure ⊗, e.

We begin by recalling the result from Theorem 3.23 and making it slightly
more general:

Proposition 5.1. Let X be a commutative K-space monoid. Then XhK is an
algebra over the Barratt-Eccles operad.

Proof. Write µ : X(k)×X(l)→ X(k ⊗ l) for the multiplication map under the
adjunction as seen in section 3.1. Then we write

θ(σ, (k1, x1), ..., (kn, xn)) = (kσ−1(1) ⊗ ...⊗ kσ−1(n), µ(xσ−1(1), ..., xσ−1(n))

Let K be a small permutative category, and X a commutative K-space. Re-
call from Proposition 3.22 the notation K(X); for now we do not care whether
we use the simplicial or topological version, and we will avoid using specific
properties of these constructions. We will define certain objects in terms of
topology to avoid saying ”space structure”, but one can check that the same
can constructions can be carried out using simplicial sets. Recall that we showed
that K(X) is a topological category, and that the category of topological cat-
egories is denoted catS with morphism being functors which are continuous as
maps of spaces. This is not to be confused with the notion of a ’continuous
functor’, i.e. a functor preserving all small limits.

Remark 5.2. Note that this construction is not comparable with the Grothendieck
construction. The Grothendieck construction looks at a K-category and unifies
this into a category. In our case we get a procedure that takes a K-space and
makes a topological category.

Proposition 5.3. The mapping X 7→ K(X) is a functor SK → catS

Proof. We give the objects of K(X) a topology by seeing it as the disjoint union
of the X(k) as mentioned before. Let F : X → Y be a morphism of K-spaces,
i.e. a natural transformation. Then we define K(F ) to be the functor which
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takes (k, x) to (k, Fk(x)). We will prove that functors induce continuous maps
in the topological setting; the simplicial case can be done analogously. Let K(F )
be the image of a functor as above. For continuity we will look at the pre-image
of an open set U ⊂ K(Y ), which we can assume to be contained in Y (k) for
some k since all open sets are unions of such open sets. Then the pre-image of
U is contained in X(k) since K(F ) does not change which component we are
in. But then the pre-image of U are the elements (k, x) with x in the pre-image
under Fk of U , which is open as Fk is continuous.

The simplicial case is analogous, and we will not prove it here.

Proposition 5.4. K(X) is permutative category when X is a commutative K-
space monoid, and the monoidal map is continuous as a map of spaces.

Proof. If ⊗ denotes the product in K and µ the adjoint of the product in X as
discussed in section 3.1, we define (k, x) ⊕ (l, y) = (k ⊗ l, µ(x, y). This makes
sense, as µ : X(k) × X(l) → X(k ⊗ l) so this is an element of K(X). The
unit is formed by (e, ∗) where e is the unit in K and ∗ is the image of the unit
map η : 1 → X(e). Associativity follows from associativity of both operations.
The weak commutativity is given by the map τ : k ⊗ l → l ⊗ k from the weak
commutativity in K; the fact that X(τ)(µ(x, y)) = µ(y, x) follows from the
definition of a commutative K-space where commutativity is exactly expressed
by this property.

For the monoidal map we calculate the explicite preimage ⊕−1(k, x) =⋃
n+m=k µ

−1
n,m(x) which is open when applied to an open set because all the

µn,m are continuous and have inverse images in different components.

A good reality check is that to see whether this permutative structure is
related to the other structure we can get out of K(X), i.e. the E∞-structure on
the homotopy colimit. This turns out to be the case.

Lemma 5.5. Let NK(X) have the E∞-structure inherited from the permutative
structure on K(X). Then this structure is isomorphic to the structure from the
homotopy colimit on XhK

Proof. Note that we have switched back to the simplicial setting as this makes
it easier to write out the algebra structure. The topological version follows as

usual. Let (k0, x0)
f1−→ ...

fn−→ (kn, xn) ∈ NK(X); this corresponds to

(k0
f1−→ ...

fn−→ kn, x0) ∈ XhK

as x1 = X(f1)(x0) etc. For the structure on NK(X) we compute (again using ⊗i
and µi for operations like ⊗ixi = x1⊗...⊗xn where the bounds are understood):

θm(σ0 → ...→ σn, (k
i
0, x

i
0)

fi1−→ ...
fin−→ (kin, x

i
n))

= (⊗ikσ
−1
0 (i)

0 , µi(x
σ−1
0 (i)

0 )
s1−→ ...→ sn(⊗ikσn(i)

n , µi(x
σ−1
n (i)
n ))

7→ (⊗ikσ
−1
0 (i)

0
s1−→ ...→ sn ⊗i kσn(i)

n , µi(x
σ−1
0 (i)

0 )

= θm(σ0 → ...→ σn, (k
i
0

fi1−→ ...
fin−→ kin), xi0))

58



which is the structure on XhK. The maps si are the

τσiσ−1
i−1
◦ (f

σ−1
i−1(1)

i × ...× fσ
−1
i−1(m)

i )

where the τ arises from the permutative structure on K

Lemma 5.6. The space BI(K(X)) is a commutative I-space. We denote it
hocolimI X. Note that here we take K(X) as a topological category, and that
the classifying space we take here is the classifying space of topological categories.

Proof. It suffices to show that ΦI(K(X))(n) is a topological category for all
n, and that the multiplication is continuous as a functor. The fact that K is
permutative then gives the commutative I-space structure. We give

Obj(ΦI(K(X))(n)) = K(X)n

the product topology. For the topology on the morphisms we define it as the
pullback in the following diagram:

Mor(ΦIK(X))(n) MorK(X)

Obj(K(X))n ×Obj(K(X))n Obj(K(X))×Obj(K(X))

(s,t)

⊗n×⊗n

Here s, t are the source and target maps respectively. The top horizontal map
is the one by which we have defined morphisms in ΦIC for any permutative C.
The vertical map on the left then forms the source and target maps respectively.
This matches the original definition for morphisms in ΦIC(n) we gave for general
permutative categories C; the morphisms there were exactly the morphisms in
C where the source and target were n-fold monoidal products. This definition
gives continuous source and target maps by definition. For composition we can
draw the following pullback diagram

Mor(ΦIK(X))(n)×Obj(K(X))n Mor(ΦIK(X))(n) Mor(ΦIK(X))(n)

Mor(K(X))×Obj(K(X)) Mor(K(X)) Mor(K(X))

The pullbacks occurring in the left column signify that the target of one
morphism is the source of the next to make the morphisms composable. The
vertical maps are continuous by the previous diagram, and the bottom horizontal
map is continuous because K(X) is a topological category. It then follows that
the to horizontal map is continuous as well.

We now come to the main theorem: every commutative K-space can be
modelled by a commutative I-space. This means that homotopy colimits over
arbitrary permutative categories can be exchanged for homotopy colimits over
I
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Theorem 5.7. We have that (hocolimI X)h I ' XhK as E∞-algebras

The proof of this fact is in one line described by the weak equivalences

XhK ∼= NK(X) ' NI(K(X))h I = (hocolimIX)h I

The first is taken from Lemma 5.5, the second is Theorem 4.30 and the third is
by definition. We have proven that all these weak equivalences preserve the E∞-
structure. We have, however, proven Theorem 4.30 in the case of a permutative
category while here we have a permutative topological category. We thus need
to check that the relevant statements from Proposition 4.10 onward also hold
for topological categories. Note that statements such as Theorem 4.13 which
only concern I-spaces and not the underlying I-categories are of no concern in
this.

• The multiplication map from Proposition 4.10 is continuous because of the
definition of the product topology. Note that in this case we are looking
at the commutative I-category monoid, and not the commutative I-space
monoid we get after taking the classifying space; the continuity of the
maps in the latter is guaranteed by the classifying space construction.

• In Proposition 4.11 we have the map j which is continuous by the product
topology definition again; the map m is continuous by Proposition 5.4.

• For Definition 4.14 we take a closer look at the definition as in [HV92],
which does assume the category over which the bar construction is taken to
be a topological category. There the standing definition is that diagrams
over a topological category are continuous, which in this case means that
if X is a C-diagram that then C(c, d) → S(X(c), X(d)) is continuous for
all c, d. Here S(−,−) denotes the morphism space in either topological
spaces or simplicial sets, where for the topological case one should use
a convenient category of topological spaces. By the latter we mean that
one should restrict to a category of spaces where the morphism sets again
form a space within the category; an example of this is described in section
VIII.5 of [Ric20].

The bar construction B(X, C, Y ) is then defined as the realization of the
simplicial space

[n] 7→ {(x, f1, ..., fn, y) | x ∈ s(f1), y ∈ t(fn)}

with s, t denoting the source and target maps. The topology is the sub-
space topology of the product topology. The face and degeneracy maps
are the same as we originally defined them, and here we see it is neces-
sary that X and Y have the continuity property; we have d0(x, f1, ...) =
(X(f1)(x), ...) and because X is continuous on maps and the evaluation is
continuous (see for example VIII.5.15 of [Ric20]) this is continuous. This
is a generalisation of the previous definition of the bar construction. All
subsequent properties of bar constructions and other definitions can also
be found in [HV92] using topological categories, so they hold true.
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• The Grothendieck construction of Definition 4.22 needs to be defined for
when we have a diagram of topological categories. Let F : C → catS
be such a diagram. We give Obj(C∫F ) the coproduct topology. The
morphisms are topologized as a subset

mor(C∫F ) ⊂ mor(C)×
∐
c

F (c)×
∐
c

mor(F (c))

We now have that we can write s(f, x, g) = (s(f), x) and t(f, x, g) =
(t(f), t(g)) which both give continuous maps. Composition is given by

((f, x, g), (f ′, x′, g′)) 7→ (f ◦ f ′, x, g ◦ F (f)(g′))

This is continuous because F (f) is continuous as F is a functor to topo-
logical categories, and evaluation is continuous. Note that the original
definition does not mention the source object; we need it here to make a
sensible source map.

• The statement of Theorem 4.24 is also true in our context. The map P
is continuous as C has the discrete topology and P−1(K) is exactly F (K)
which is open and closed. It is continuous on morphisms because on
morphisms it is a projection. The codomain of P ′ is the disjoint union of
all F (K) so this maps is also continuous on both objects and morphisms.
In the proof we also use a map J which on objects is an inclusion map from
the definition of the coproduct and therefore continuous. On morphisms
we can write it as J(g) = (idK , s(g), g) which is continuous. The rest
of the proof uses manipulations of these functors, which by the above is
allowed in this context.
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[DS95] W. G. Dwyer and J. Spaliński. “Homotopy theories and model cate-
gories”. In: Handbook of algebraic topology. North-Holland, Amster-
dam, 1995, pp. 73–126. doi: 10.1016/B978-044481779-2/50003-1.
url: https://doi.org/10.1016/B978-044481779-2/50003-1.

[J P97] J. P. J. P. May. “Operads, algebras and modules”. In: Operads: Pro-
ceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995).
Vol. 202. Contemp. Math. Amer. Math. Soc., Providence, RI, 1997,
pp. 15–31. doi: 10.1090/conm/202/02588. url: https://doi.org/
10.1090/conm/202/02588.

[BM03] Clemens Berger and Ieke Moerdijk. “Axiomatic homotopy theory
for operads”. In: Comment. Math. Helv. 78.4 (2003), pp. 805–831.
issn: 0010-2571. doi: 10.1007/s00014-003-0772-y. url: https:
//doi.org/10.1007/s00014-003-0772-y.

[DI04] Daniel Dugger and Daniel C. Isaksen. “Topological hypercovers and
A1-realizations”. In: Math. Z. 246.4 (2004), pp. 667–689. issn: 0025-
5874. doi: 10.1007/s00209-003-0607-y. url: https://doi.org/
10.1007/s00209-003-0607-y.

[Shu06] M. Shulman. Homotopy limits and colimits and enriched homotopy
theory. 2006. arXiv: math/0610194 [math.AT].

[Sch07] Christian Schlichtkrull. “The homotopy infinite symmetric product
represents stable homotopy”. In: Algebr. Geom. Topol. 7 (2007),
pp. 1963–1977. issn: 1472-2747. doi: 10.2140/agt.2007.7.1963.
url: https://doi.org/10.2140/agt.2007.7.1963.

[GJ09] Paul G. Goerss and John F. Jardine. Simplicial homotopy theory.
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